سابقه و هدف:استامينوفن يکي از داروهاي ضد درد و ضدالتهاب است که بهطور گسترده براي انسان و حيوان استفاده ميشود. در اين تحقيق حذف عامل استامينوفن از آب آشاميدني با روش الكتروفوتوكاتاليتيكي نانو ذرات اكسيد روي تثبيتشده بر الكترود روي بررسي گرديد.
روش بررسي: اين تحقيق از نوع آزمايشگاهي-کاربردي بود. نمونه هاي آب آشاميدني حاوي استامينوفن در رآكتور ناپيوسته الكتروشيميايي (الكترودهاي روي-مس)، تابش اشعه فرابنفش، الكتروشيميايي (الكترودهاي روي-مس) و پرتو فرابنفش، الكتروفوتوكاتاليتيكي (الكترودهاي نانو ذرات اكسيد روي تثبيتشده روي الكترود روي-مس) و پرتو فرابنفش آزمايش گرديدند. اثر متغيرهاي مختلف نظير غلظت استامينوفن (50، 100 و 200 ميليگرم در ليتر)، شدت تابش لامپ فرابنفش (120، 240 و 360 ميلي وات بر سانتيمتر مربع)، pH(4، 6 و 8)، تعداد لايههاي تثبيتشده (1، 2 و 3 لايه)، چگالي جريان الکتريکي (3، 6 و 9 ميليآمپر بر سانتيمتر مربع) و مدت تابش لامپ فرابنفش (30، 60 و 90 دقيقه) در حذف الكتروفوتوكاتاليتيكي استامينوفن بررسي گرديدند. ملاحظات اخلاقي در اين مطالعه بر اساس دستورالعمل هلسينکي رعايت شد.
يافتهها: حذف کامل 200 ميليگرم بر ليتر استامينوفن با استفاده از دولايه نانو ذرات اكسيد روي تثبيتشده روي الكترود روي، چگالي جريان الکتريکي 9 ميليآمپر بر سانتيمتر مربع و شدت لامپ فرابنفش mW/cm2 360 UV-A در pH معادل 4 به زمان کمتر از 90 دقيقه نياز دارد. حذف کامل 50 ميليگرم بر ليتر استامينوفن با استفاده از دولايه نانو ذرات اكسيد روي تثبيتشده روي الكترود روي، چگالي جريان الکتريکي 3 ميليآمپر بر سانتيمتر مربع و شدت لامپ فرابنفش mW/cm2 360 UV-A در pH معادل 4 به زمان کمتر از 60 دقيقه نياز دارد.
نتيجهگيري: يافتهها نشان دادند که سيستم الكتروفوتوكاتاليتيكي الكترودهاي نانو ذرات اكسيد روي تثبيتشده روي الكترود روي - مس و پرتو فرابنفش، روش مناسب در حذف استامينوفن از آب آشاميدني ميباشند.
واژگان کلیدی: آب آشاميدني، استامينوفن، الكتروفتوكاتاليتيكي، نانو ذرات اكسيد روي، لامپ فرابنفش
How to cite this article: Kashi G, Potkee M. Investigation Electro-photocatalytic Removal of Acetaminophen from Drinking Water. J Saf Promot Inj Prev. 2016; 4(3): 175-84.
1. Sayadi MH, Trivedy RK, Pathak RK. Pollution of Pharmaceutical in Environment. Journal of Industrial Pollution Control. 2010; 26 (1): 89-94.[Scopus]
2. Rahbar M, Mehrgan H, Aliakbari NH. Prevalence of Antibiotic-Resistant Acinetobacter Baumannii in a 1000-Bed Tertiary Care Hospital in Tehran, Iran. Indian Journal Pathology Microbiology. 2010; 53(2): 290-3.[Scopus]
3. Ghojazadeh M, Pournaghi Azar F, Naghavi- Behzad M, Mahmoudi M, Azami-Aghdash S, Jamali Z. Fluoride Concentration of Drinking Waters and Prevalence of Fluorosis in Iran. A Systematic Review. 2013;7(1):1-7.
4. Wu M, Atchley D, Greer L, Janssen S, Rosenberg D, Sass J. Dosed Without Prescription: Preventing Pharmaceutical Contamination of our Nation’s Drinking Water. Natural Resources Defense Council White Paper. 2009;60.
5. Webb S, Ternes T, Gibert M, Olejniczak K. Indirect Human Exposure to Pharmaceuticals via Drinking Water. Toxicology letters. 2003;142(3):157-67.[Scopus]
6. Sayadi M, Torabi S. Geochemistry of Soil and Human Health: A Review. Pollution Research. 2009;28(2):257-62.[Scopus]
7. Valverde RS, García MDG, Galera MM, Goicoechea HC. Determination of Tetracyclines in Surface Water by Partial Least Squares Using Multivariate Calibration Transfer to Correct the Effect of Solid Phase Preconcentration in Photochemically Induced Fluorescence Signals. Analytica Chimica Acta. 2006;562(1):85-93.[Scopus]
8. Castiglioni S, Calamari D, Bagnati R, Zuccato E, Fanelli R, Editors. Comparison of the Concentrations of Pharmaceuticals in Steps and Rivers in Italy as a Tool for Investigating their Environmental Distribution and Fate. Abstract SETAC Europe. 14th Annual Meeting; 2004.
9. Huber MM, GÖbel A, Joss A, Hermann N, LÖffler D, McArdell CS, et al. Oxidation of Pharmaceuticals During Ozonation of Municipal Wastewater Effluents: A Pilot Study. Environmental Science & Technology. 2005;39(11):4290-9.[Scopus]
10. Devilliers D. Semiconductor Photocatalysis: Still an Active Research Area Despite Barriers to Commercialization. Energeia. 2006;17(3):1-6.
11. Tyagi A, Raj B. Physics and Chemistry of Photocatalytic Titanium Dioxide: Visualization of Bactericidal Activity Using Atomic Force Microscopy. Current Science. 2006;90(10).
12. Khanna A. Nanotechnology in High Performance Paint Coatings. Asian J Exp Sci. 2008;21(2):25-32.
13. Wunderlich W, Oekermann T, Miao L, Hue N, Tanemura S, Tanemura M. Electronic Properties of Nano-Porous Tio 2- and Zno Thin Films- Comparison of Simulations and Experiments. Journal of Ceramic Processing & Research. 2004;5(4):343-54.
14. Zhao X, Qu J, Liu H, Qiang Z, Liu R, Hu C. Photoelectrochemical Degradation of Anti-Inflammatory Pharmaceuticals At Bi 2 Moo 6–Boron-Doped Diamond Hybrid Electrode Under Visible Light Irradiation. Applied Catalysis B: Environmental. 2009;91(1):539-45.
15. Macphee D, Wells R, Kruth A, Todd M, Elmorsi T, Smith C, et al. A Visible Light Driven Photo Electro Catalytic Fuel Cell for Clean-Up of Contaminated Water Supplies. Desalination. 2009;248(1):132-7.[Scopus]
16. Massoudinejad M, Yazdanbakhsh A, Mohamadi B, Habibe M. Possibility of Making Liquid Disinfectant from Electrolysis of NaCl. J Saf Promot Inj Prev. 2016;4(2):69-74.
17. Aliannejad S, Kashi G, Khezri Sm, Mashinchiyan A. Removal of Fluoride from Drinking Water Using an Electrocoagulation Reactor, Batch Experiments. J Saf Promot Inj Prev. 2014;2(1):47-54.
18. Zuolian C, Kok-Eng T, Yong T, Amos G, Xi-Jiang Y. Studies on Water Treatment Using Nano-Semiconductors and Photocatalysts. Sustain Environ Res. 2010;20(5):281-6. [Scopus]
19. Rice EW, Baird RB, Eaton AD, Clesceri LS. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. 2012.
20. Deng H, Cheuk K, Zheng W-N, Wen C, Xiao C-F. Low Temperature Preparation of Nano Tio2 and its Application as Antibacterial Agents. Transactions of Nonferrous Metals Society of China. 2007;17(s1B):s700-s3.
21. Alizadeh M, Mahvi AH, Mansoorian HJ. The Survey of Electrocoagulation Process for Removal Dye Reactive Orange 16 from Aqueous Solutions Using Sacrificial Iron Electrodes. Iranian Journal of Health Safety and Environment. 2014;1(1):1-8.
22. Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC. Use of Titanium Dioxide Photocatalysis on the Remediation of Model Textile Wastewaters Containing Azo Dyes. Molecules. 2011;16(12):10370-86.[Scopus]
23. Meena RC, Verma H, Disha H. Studies on Photocatalytic Degradation of Azo Dye Acid Red-18 (PONCEAU 4R) Using Methylene Blue Immobilized Resin Dowex-11. International Research Journal of Environment Sciences. 2013;2(12):35-41.
24. Ben W, Qiang Z, Pan X, Chen M. Removal of Veterinary Antibiotics from Sequencing Batch Reactor Pretreated Swine Wastewater by Fenton's Reagent. Water research. 2009;43(17):4392-402.[Scopus]
25. Haque M, Muneer M. Photodegradation of Norfloxacin in Aqueous Suspensions of Titanium Dioxide. J Hazard Mater. 2007;145(1):51-7. [PubMed]
26. Farhadi S, Aminzadeh B, Torabian A, Khatibikamal V, Fard MA. Comparison of COD Removal from Pharmaceutical Wastewater by Electrocoagulation, Photoelectrocoagulation, Peroxi-Electrocoagulation and Peroxi-Photoelectrocoagulation Processes. J Hazard Mater. 2012;219:35-42.[PubMed]
27. Dehghani S, Jonidi Jafari A, Farzadkia M, Gholami M. Investigation of the Efficiency of Fenton’s Advanced Oxidation Process in Sulfadiazine Antibiotic Removal from Aqueous Solutions. Arak Medical University Journal. 2012;15(7):19-29.
28. PURNIMA Rao P, Tak P, Benjamin S. Photocatalytic Degradation of Azure a on Carbon Doped Zinc Oxide. Scientific Reviews & Chemical Communication 2016;6(2): 19-26.
29. Philippidis N, Sotiropoulos S, Efstathiou A, Poulios I. Photoelectrocatalytic Degradation of the Insecticide Imidacloprid using TiO 2/Ti Electrodes. Journal of Photochemistry and Photobiology A: Chemistry. 2009;204(2):129-36.[Scopus]
30. Habibi MH, Talebian N, Choi J-H. The Effect of Annealing on Photocatalytic Properties of Nanostructured Titanium Dioxide Thin Films. Dyes and pigments. 2007;73(1):103-10.[Scopus]
31. Nafie AA, Yasmen HZ. Degradation of Phenol in Water Using Light Induced Zno Photocatalysis. Global Research Analtsis. 2013;2(1).
32. Elaziouti A, Ahmed B. Zno-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. J Chem Eng Process Technol. 2011;2:1-9.
33. Palmisano G, Loddo V, El Nazer HH, Yurdakal S, Augugliaro V, Ciriminna R, et al. Graphite-Supported TiO 2 for 4-Nitrophenol Degradation in a Photoelectrocatalytic Reactor. Chemical Engineering Journal. 2009;155(1):339-46.[Scopus]
34. El-Ghenymy A, Oturan N, Oturan MA, Garrido JA, Cabot PL, Centellas F, et al. Comparative electro-Fenton and UVA Photoelectro-Fenton Degradation of the Antibiotic Sulfanilamide Using a Stirred BDD/Air-Diffusion Tank Reactor. Chemical engineering journal. 2013;234:115-23. [Scopus]
35. Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, et al. Mineralization of the Drug Β-Blocker Atenolol by Electro-Fenton and Photoelectro-Fenton Using an Air-Diffusion Cathode for H 2 O 2 Electrogeneration Combined with a Carbon-Felt Cathode for Fe 2+ Regeneration. Applied Catalysis B: Environmental. 2010;96(3):361-9.
36. Kansal SK, Kaur N, Singh S. Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nano-Photocatalysts. Nanoscale research letters. 2009;4(7):709-16.[PubMed]
37. Massoudinejad Mr, Khashij M, Soltanian M. Survey of Electrocoagulation Process in the Removal of Pathogen Bacteria from Wastewater before Discharge in the Acceptor Water. J Saf Promot Inj Prev. 2014;2(1):9-14.
38. Kashi G, Jaberzadee N. Optimization Electrophotocatalytic Removal of Acid red 18 from Drinking Water by the Taguchi Model. Bulgarian Chemical Communications. 2015;47:179-86.