ارزیابی ریسک بهداشتی مواجهه استنشاقی با هیدروکربنهای آروماتیک چندحلقهای متصل به ذرات PM2.5 در هوای شهرتهران
فصلنامه علمی پژوهشی بهداشت در عرصه,
دوره 12 شماره 4 (1403),
7 ژوئیهٔ 2025
,
صفحه 1-9
https://doi.org/10.22037/jhf.v12i4.47054
چکیده
زمینه و اهداف: هیدروکربنهای آروماتیک چند حلقهای (PAHs) با خاصیت سرطانزایی بالا به طور گسترده در محیط زیست حضور دارند. امروزه این ترکیبات همزمان با افزایش روزافزون آلودگی هوا به دلیل اثرات نامطلوب بر سلامت انسان توجه بیشتری را به خود جلب کردهاند. مطالعه حاضر به ارزیابی غلظت و ریسک بهداشتی استنشاقی ناشی از مواجهه با PAHs باند شده به ذرات معلق ریز (PM2.5) در هوای شهر تهران پرداخته است.
مواد و روشها: دادههای این مطالعه از چهار ایستگاه مختلف شهر تهران در پاییز سال 1400 جمعآوری شدند. پس از استخراج و تجزیه و تحلیل نمونهها با استفاده از کروماتوگرافی گازی- طیف سنجی جرمی(GC-MS)، ریسک سرطانزایی ترکیبات با استفاده از روش پیشنهادی سازمان حفاظتی محیط زیست آمریکا (USEPA) و مدل مونت کارلو ارزیابی شد. رعایت ملاحظات اخلاقی در تمام مراحل اجرای مطالعه در نظر گرفته شد.
یافتهها: میانگین غلظت کل PAHs در ایستگاههای منتخب بینng/m³ 65/92 تا 142/76 متغیر بود. همچنین؛ نتایج نشان داد که برخی از ترکیبات PAHs مانند دیبنزو [ah]آنتراسن دارای ریسک سرطانزایی قابل توجهی بودند (CR=5×10−6)، در حالی که ریسک غیرسرطانزایی این ترکیبات در سطح قابل قبول قرار داشت (HQ=0/0016).
نتیجهگیری: نتایج این مطالعه تاکید میکند که کاهش انتشار PAHs از منابع مختلف، به ویژه اگزوز خودروها و فعالیتهای صنعتی، ضروری است تا از اثرات زیانبار این آلایندهها بر سلامت عمومی جلوگیری شود.
- ذرات معلق ریز، هیدروکربنهای آروماتیک چند حلقهای، ریسک سرطانزایی، مدل مونت کارلو
ارجاع به مقاله
مراجع
-Thanvisitthpon N, Kallawicha K, Chao HJ. Effects of urbanization and industrialization on air quality. Health and Environmental Effects of Ambient Air Pollution 2024; 1:231-55.
-Fazakas E, Neamtiu IA, Gurzau ES. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides)–a review of the literature. Reviews on Environmental Health 2024; 39(3):459-78.
-Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health impacts of air pollution: A review. Frontiers in Public Health 2020; 8:1-13.
-WHO. Ambient (outdoor) air pollution. Available from: https:// www. who. int /news- room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed Oct 24, 2024.
-Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope III CA, et al. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: A Cancer Journal for Clinicians 2020; 70(6):460-79.
-Room SA, Lin CE, Pan SY, Hsiao TC, Chou CC-K, Chi KHJA, et al. Incremental Lifetime cancer risk of PAHs in PM2.5 via Local emissions and long-range transport during Winter. Aerosol and Air Quality Research 2023; 23(3):220319.
-Chen YW, Ho TPT, Liu KT, Jian MY, Katoch A, Cheng YH. Exploring the characteristics and source-attributed health risks associated with polycyclic aromatic hydrocarbons and metal elements in atmospheric PM2.5 during warm and cold periods in the northern metropolitan area of Taiwan. Environmental Pollution 2024; 360:124703.
-Figliuzzi M, Tironi M, Longaretti L, Mancini A, Teoldi F, Sangalli F, et al. Copper-dependent biological effects of particulate matter produced by brake systems on lung alveolar cells. Archives of Toxicology 2020; 94:2965-79.
-Neupane B, Chen P, Kang S, Tripathee L, Rupakheti D, Sharma CM, et al. Health risk assessment of atmospheric polycyclic aromatic hydrocarbons over the Central Himalayas. Human and Ecological Risk Assessment: An International Journal 2018; 24(7):1969-82.
- Ahmadian F, Rajabi S, Azhdarpoor A. Atmospheric Concentrations, seasonal variations, and health risk assessment of PM2.5, PM10, and SO2 in Tehran Metropolis, Iran. Journal of Health Sciences & Surveillance System 2025; 13(2):161-73.
-Sui S, Ng J, Gao Y, Peng C, He C, Wang G, et al. Pollution characteristics and chronic health risk assessment of metals and metalloids in ambient PM2.5 in Licheng District, Jinan, China. Environmental Geochemistry and Health 2020; 42:1803-15.
-Sánchez-Piñero J, Novo-Quiza N, Moreda-Piñeiro J, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía PJEr. Multi-class organic pollutants in atmospheric particulate matter (PM2.5) from a Southwestern Europe industrial area: Levels, sources and human health risk. Environmental Research 2022; 214:114195.
-EPA. Air emission measurement center (EMC). Available from: https://www.epa.gov/emc/method-5-particulate-matter-pm. Accessed April 21, 2025.
-Ho CC, Chen YC, Yet SF, Weng CY, Tsai HT, Hsu JF, et al. Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. Science of the Total Environment 2020; 719:137243.
-Wei H, Liang F, Meng G, Nie Z, Zhou R, Cheng W, et al. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells. Scientific Reports 2016; 6(1):33402.
-Alves CA, Vicente AM, Custódio D, Cerqueira M, Nunes T, Pio C, et al. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Science of the Total Environment 2017; 595:494-504.
-Epa U. Risk assessment guidance for superfund volume I: Human health evaluation manual (Part F, Supplemental guidance for inhalation risk assessment). Washington DC: 2009.
-Neupane B, Chen P, Kang S, Tripathee L, Rupakheti D, Sharma CM. Health risk assessment of atmospheric polycyclic aromatic hydrocarbons over the Central Himalayas. Human and Ecological Risk Assessment: An International Journal 2018; 24(7):1969-82.
-Sui S, Ng J, Gao Y, Peng C, He C, Wang G, et al. Pollution characteristics and chronic health risk assessment of metals and metalloids in ambient PM2.5 in Licheng District, Jinan, China. Environmental Geochemistry and Health 2020; 42:1803-15.
-Rezayani N, Mir Mohammadi M, Mehrdadi N. Determination of selected heavy metals in air samples and human health risk assessment in Tehran city, Iran. Iranian Journal of Chemistry and Chemical Engineering 2022; 41(8):2674-92.
-De Pieri S, Arruti A, Huremovic J, Sulejmanovic J, Selovic A, Ðorđević D, et al. PAHs in the urban air of Sarajevo: levels, sources, day/night variation, and human inhalation risk. Environmental monitoring and assessment. 2014; 186:1409-19.
-Motesaddi Zarandi S, Shahsavani A, Khodagholi F, Fakhri Y. Concentration, sources and human health risk of heavy metals and polycyclic aromatic hydrocarbons bound PM2.5 ambient air, Tehran, Iran. Environmental Geochemistry and Health 2019; 41:1473-87.
-Okechukwu VU, Omokpariola DO, Onwukeme VI, Nweke EN, Omokpariola PL. Pollution investigation and risk assessment of polycyclic aromatic hydrocarbons in soil and water from selected dumpsite locations in rivers and Bayelsa State, Nigeria. Environmental Analysis, Health and Toxicology 2021; 36(4):e2021023.
-Ashouri E, Jafari AJ, Gholami M, Kermani M, Farzadkia M, Shahsavani A. Characterization, spatial distribution, and health risk assessment of polycyclic aromatic hydrocarbons and heavy metals bounded PM2.5 in urban air of Tabriz, Iran. Journal of Air Pollution and Health 2022; 7(2):173-96.
-Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, et al. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Science of the Total Environment 2015; 527:100-110.
-Kermani M, Jonidi Jafari A, Gholami M, Shahsavani A, Taghizadeh F, Arfaeinia H. Ambient air PM2.5-bound PAHs in low traffic, high traffic, and industrial areas along Tehran, Iran. Human and Ecological Risk Assessment: An International Journal 2021; 27(1):134-51.
-Mohanraj R, Solaraj G, Dhanakumar S. PM2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India. Bulletin of Environmental Contamination and Toxicology 2011; 87:330-35.
-Zhang L, Yang Z, Liu J, Zeng H, Fang B, Xu H, et al. Indoor/outdoor relationships, signatures, sources, and carcinogenic risk assessment of polycyclic aromatic hydrocarbons-enriched PM2.5 in an emerging port of northern China. Environmental Geochemistry and Health 2021; 43(8):3067-81.
-Wu D, Chen L, Ma Z, Zhou D, Fu L, Liu M, et al. Source analysis and health risk assessment of polycyclic aromatic hydrocarbon (PAHs) in total suspended particulate matter (TSP) from Bengbu, China. Scientific Reports 2024; 14(1):5080.
-Jameson CW. Polycyclic aromatic hydrocarbons and associated occupational exposures. International Agency for Research on Cancer, Lyon (FR) 2019. PMID:33979079.
-Bukowska B, Mokra K, Michałowicz J. Benzo[a]pyrene-Environmental occurrence, human exposure, and mechanisms of toxicity. International Journal of molecular Sciences 2022; 23(11):6348.
-Maleki R, Asadgol Z, Kermani M, Jafari AJ, Arfaeinia H, Ghodsi S, et al. Concentration, sources, and inhalation-based risk assessment of PM2.5-bound PAHs and trace elements in ambient air of areas with low and high traffic density in Tehran. Arabian Journal of Geosciences 2021; 14(10):855.
-Ediagbonya TF, Oyinlusi OC, Okungbowa EG, Uche JI. Environmental and human health risk assessments of polycyclic aromatic hydrocarbons in particulate matter in Nigeria. Environmental Monitoring and Assessment 2022; 194(8):569.
-Chen YW, Cheng YH, Hsu CY. Characterization of the sources and health risks of polycyclic aromatic hydrocarbons in PM2.5 and their relationship with black carbon: A case study in northern Taiwan. Environmental Pollution 2023; 336:122427.
- چکیده مشاهده شده: 201 بار