بهینهسازی پارامترهای آسیاب گویدار سیارهای بهمنظور بازیابی تیتانیوم از لجن رنگ خودروسازی با استفاده از فرایند هضم اسیدی
فصلنامه علمی پژوهشی بهداشت در عرصه,
دوره 12 شماره 2 (1403),
2 آبان 2024
,
صفحه 62-70
https://doi.org/10.22037/jhf.v12i2.44466
چکیده
زمینه و اهداف: باتوجه به غلظت بالای فلزات در لجن رنگ، یکی از روشهای مؤثر و اقتصادی جهت کاهش آلودگی از این لجن، بازیابی فلزات از آن است. ترکیب فرایند مکانوشیمیایی و هضم اسیدی، در بازیابی فلزات میتواند بازده بازیابی فلزات را بهبود بخشد. در این فرایند پارامترهای آسیاب نقش مهمی در تعیین ساختار شیمیایی محصولات نهایی دارند.
مواد و روشها: نمونههای لجن رنگ، درسه سرعت، 150، 250 و 350 دور در دقیقه، زمان 2، 4 و 6 ساعت و نسبت وزنی گوی به نمونه 10 و 20 آسیاب گردیدند، سپس نمونههای آسیاب شده، تحت شرایط یکسان هضم اسیدی شدند و دادهها توسط نرمافزار Minitab با استفاده از روش تاگوچی مورد تجزیه و تحلیل قرار گرفتند. رعایت ملاحظات اخلاقی در تمام مراحل اجرای مطالعه درنظر گرفته شد.
یافتهها: از بین پارامترهای آَسیاب، سرعت با مشارکت 49% بیشترین تاثیر را در افزایش بازیابی تیتانیوم داشت، سپس پارامترهای زمان و نسبت گوی به نمونه، به ترتیب با 34 و 17 درصد در رتبههای بعدی قرار داشتند. شرایط بهینه آسیاب برای رسیدن به بیشترین بازیابی، سرعت350 دور در دقیقه، زمان 4 ساعت و نسبت گوی به نمونه 20 به دست آمد.
نتیجهگیری: بهطورکلی با افزایش پارامترهای آسیاب میزان بازیابی فلزات افزایش مییابد، اما افزایش بیش از حد آنها، ممکن است اثر عکس داشته باشد و سبب از دست رفتن هزینه، زمان و انرژی شود؛ بنابراین باید مقادیر بهینة پارامترهای آسیاب تعیین گردد که در این مطالعه مقادیر بهینه، سرعت، زمان و نسبت وزن نمونه به لجن به دست آمد.
- لجن رنگ، مکانو شیمیایی، هضم اسیدی، آسیاب گویدار سیارهای، بهینهسازی، تاگوچی
ارجاع به مقاله
مراجع
- Mymrin V, Praxedes PB, Alekseev K, Avanci MA, Rolim PH, Povaluk AE, et al. Manufacturing of sustainable ceramics with improved mechanical properties from hazardous car paint waste to prevent environment pollution. The International Journal of Advanced Manufacturing Technology 2019; 105:2357-67. Doi: 10. 1007/ s00170-019-04302-z.
- Avili RG, Takdastan A, Atabi F, Omrani GA. Feasibility study of chromium removal from paint sludge with biological sludge, using vermicompost by eisenia fetida (case study: Saipa automotive industry). Jundishapur Journal of Health Sciences 2018; 10(3). Doi: 10.5812/jjhs.78891.
- Salihoglu G, Salihoglu NK. A review on paint sludge from automotive industries: Generation, characteristics and management. Journal of Environmental Management 2016; 169:223-35.
- Khezri SM, Shariat SM, Tabibian S. Reduction of pollutants in painting operation and suggestion of an optimal technique for extracting titanium dioxide from paint sludge in car manufacturing industries—case study (SAIPA). Toxicology and Industrial Health 2012; 28(5):463-69.
- SP SP, Swaminathan G, Joshi VV. Energy conservation–a novel approach of co-combustion of paint sludge and Australian lignite by principal component analysis, response surface methodology and artificial neural network modeling. Environmental Technology & Innovation 2020; 20:101061. Doi: 10. 1016/ j. eti. 2020. 101061.
-Bysko S, Krystek J, Bysko S. Automotive paint shop 4.0. Computers & Industrial Engineering 2020;139:105546. Doi: 10.1016/j.cie.2018.11.056.
- Avci H, Ghorbanpoor H, Topcu IB, Nurbas M. Investigation and recycling of paint sludge with cement and lime for producing lightweight construction mortar. Journal of Environmental Chemical Engineering 2017; 5(1):861-69.
- Januri Z, Rahman NA, Idris SS, Matali S, Manaf SFA. Microwave assisted pyrolysis (MAP) of automotive paint sludge (APS). Jurnal Teknologi 2015; 75(8):7-11.
- Ruffino B, Campo G, Idris SS, Salihoğlu G, Zanetti M. Automotive paint sludge: A review of pretreatments and recovery options. Resources 2023; 12(4):45.
- Ebadi N, Mohseni Bandpey A, Shahsavani A, Seilsepour M, Abtahi M. Carcinogenic and non-carcinogenic risk assessment of heavy metals in lettuce in Varamin plain region in 2022. Journal of Health in the Field 2024; 12(1):1-10 (In Persian).
- Li Z, Huang P, Hu H, Zhang Q, Chen M. Efficient separation of Zn (Ⅱ) from Cd (Ⅱ) in sulfate solution by mechanochemically activated serpentine. Chemosphere 2020; 258:127275.
- Khezri M, Abdollah F. Separation of alumina from the paint sludge of automotive industry by leaching method. Journal of Environmental Science and Technology 2014; 16(2):67-76 (In Persian).
-Xing P, Ma B, Wang C, Wang L, Chen Y. A simple and effective process for recycling zinc-rich paint residue. Waste Management 2018; 76:234-41.
- Um N, Um N. Hydrometallurgical recovery process of rare earth elements from waste: main application of acid leaching with devised τ-T diagram. Rare Earth Element 2017:44-58. Doi: 10.5772/intechopen.68302.
- Ke Y, Chai LY, Min XB, Tang CJ, Chen J, Wang Y, et al. Sulfidation of heavy-metal-containing neutralization sludge using zinc leaching residue as the sulfur source for metal recovery and stabilization. Minerals Engineering 2014; 61:105-12.
- Chen Z, Lu S, Tang M, Lin X, Qiu Q, He H, et al. Mechanochemical stabilization of heavy metals in fly ash with additives. Science of the Total Environment 2019; 694:133813.
- Zhang T, Zhao Y, Kang S, Bai H, Song G, Zhang Q. Enhanced arsenic removal from water by mechanochemical synthesis of Ca–Al–Fe ternary composites. Journal of Cleaner Production 2021; 321:128959.
- Kaçakgil EC, Bingöl D. Performance assessment and statistical modeling of modification and adsorptive properties of a lignocellulosic waste modified using reagent assisted mechanochemical process as a low-cost and high-performance method. Sustainable Chemistry and Pharmacy 2020; 15:100226.
- Hou H, Zhou J, Ji M, Yue Y, Qian G, Zhang J. Mechanochemical activation of titanium slag for effective selective catalytic reduction of nitric oxide. Science of the Total Environment 2020; 743:140733.
- Boldyreva EV. Dynamics of mechanochemical processes. The Future of Dynamic Structural Science 2013:77-89. Doi: 10.1007/978-94-017-8550-1_6.
- Ganji SM, Saadani M, Bakhtiarvand SNA. Investigating the possibility of iron recovery from water treatment plant sludge with planetary ball mill and acid digestion process. Journal of Health in the Field 2023; 11(1):7-16 (In Persian).
- Sangu T, Xin Y, Hitomi T, Kato K, Shirai T. Influence of ball materials on the surface activation behavior of coal ash particles during a mechanochemical process. Ceramics International 2023; 49(21):34327-32.
- Liu Z, Liu G, Cheng L, Gu J, Yang J, Yuan H, et al. Ultra-fast mechanochemistry reaction process: An environmentally friendly instant recycling method for spent LiFePO4 batteries. Separation and Purification Technology 2024; 335:126174.
- Mussapyrova L, Nadirov R, Baláž P, Rajňák M, Bureš R, Baláž M. Selective room-temperature leaching of copper from mechanically activated copper smelter slag. Journal of Materials Research and Technology 2021; 12:2011-25.
- Nayerloo N, Kashi G, Hadavand Khani A. Efficacy study of Manganese removal from municipal drinking water using powdered eggshell. Journal of Health in the Field 2019; 7(2):21-31 )In Persian).
- Hajji H, Nasr S, Millot N, Salem EB. Study of the effect of milling parameters on mechanosynthesis of hydroxyfluorapatite using the Taguchi method. Powder Technology 2019; 356:566-80.
- Abdurakhmanov A, Usmonov U. The problems of automobile enterprise studying mud sweats and storing them in a land. Proceedings of International Conference on Scientific Research in Natural and Social Sciences 2023 Jan. 5; Toronto, Canada.
- Yeganeh B, Khatamgooya A. The feasibility study of stabilizing the automotive paint sludge by recycling, to produce green concrete blocks, considering environmental and mechanical factors. Journal of Material Cycles and Waste Management 2023; 25(2):931-43.
- Thambiliyagodage C, Wijesekera R. Ball milling–a green and sustainable technique for the preparation of titanium based materials from ilmenite. Current Research in Green and Sustainable Chemistry 2022; 5:100236. Doi:10.1016/j.crgsc.2021.100236.
- Asadi M, Baghizadeh A. Optimization and characterization of biosynthesized gold nanoparticles by Oenothera biennis seed extract using taguchi method. Journal of Medicinal Plants 2020; 19(75):102-17 (In Persian).
- Xie J, Huang K, Nie Z, Yuan W, Wang X, Song Q, et al. An effective process for the recovery of valuable metals from cathode material of lithium-ion batteries by mechanochemical reduction. Resources, Conservation and Recycling 2021; 168:105261. Doi:10.1016/j.resconrec.2020.105261.
- Hussain I, Lee JE, Jeon SE, Cho HJ, Huh SH, Koo BH, et al. Effect of milling speed on the structural and magnetic properties of Ni70Mn30 alloy prepared by Planetary Ball Mill method. Korean Journal of Materials Research 2018; 28(10):539-43.
- Zhang ZY, Zhang FS, Yao T. An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps. Waste Management 2017; 68:490-97.
- El-Eskandarany MS, Shaban E, Aldakheel F, Alkandary A, Behbehani M, Al-Saidi M. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell. Scientific Reports 2017; 7(1):13296. Doi: 10.1038/s41598-017-13483-0.
- Liu F, Chen W, Wan B, Chen H, Ling Z, Chen Z, et al. Recovery of high-grade copper from metal-rich particles of waste printed circuit boards by ball milling and sieving. Environmental Technology 2022; 43(4):514-23.
- Samrot AV, Sahithya CS, Selvarani J, Purayil SK, Ponnaiah P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Current Research in Green and Sustainable Chemistry 2021; 4:100042. Doi: 10.1016/j.envadv.2024.100524.
- Kuziora P, Wyszyńska M, Polanski M, Bystrzycki J. Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. International Journal of Hydrogen Energy 2014; 39(18):9883-87.
- چکیده مشاهده شده: 142 بار