بهینه سازی فرآیند انعقاد جهت حذف COD و رنگ از فاضلاب واحد رنگرزی یک کارخانه فرش ماشینی و ارزیابی تجزیه پذیری بیولوژیکی پساب حاصل
فصلنامه بهداشت در عرصه,
دوره 5 شماره 3,
22 شهریور 2017
,
صفحه 24-33
https://doi.org/10.22037/jhf.v5i3.18480
چکیده
زمينه و اهداف: صنعت نساجي يکي از بزرگترين مصرف کنندگان آب در جهان است که فاضلاب آن با مقادير زياد رنگ، اکسيژن مورد نياز شيميايي بالا، pH با نوسان زياد و درجه حرارت بالا شناخته شده است. در ميان روشهاي تصفيه فاضلاب صنايع نساجي، فرايند انعقاد به دليل راهبري ساده و اثربخش و همچنين هزينه سرمايهگذاري نسبتاً پايين به طور گستردهاي مورد استفاده قرار ميگيرد.
مواد و روشها: مطالعه در ﻣﻘﻴﺎس آزﻣﺎﻳﺸﮕﺎﻫﻲ بر روي نمونه واقعي و ﺑﺎ اﺳﺘﻔﺎده از سه ﻣﻨﻌﻘﺪ ﮐﻨﻨﺪه ﻣﻌﺪﻧﻲ ﭘﻠﻲ آﻟﻮﻣﻴﻨﻴﻢ ﮐﻠﺮاﻳﺪ، ﺳﻮﻟﻔﺎت ﻓﺮيک و ﮐﻠﺮورﻓﺮﻳﮏ با استفاده از دستگاه جارتست انجام شد. به منظور بهينهسازي فرآيند، متغيرهاي pH، غلظت ماده منعفد کننده، زمان و سرعت انعقاد در حذف رنگ و COD مورد بررسي قرار گرفت. تعيين نسبت BOD5/ COD به عنوان شاخص تجزيه پذيري استفاده شد.
يافتهها: در شرايط بهينه فرآيند (pH برابر با 9، دوز 250 ميليگرم بر ليتر و سرعت انعقاد 175 دور در دقيقه با زمان 5 دقيقه)، بيشترين مقادير راندمان حذف رنگ و اکسيژن مورد نياز شيميايي با کاربرد پلي آلومينيوم کلرايد به ترتيب 95 و 77/4 درصد حاصل شد. کاربرد منعقد کننده پلي آلومينيوم کلرايد در شرايط بهينه ميزان تجزيه پذيري فاضلاب را از 0/07 به 0/21 افزايش داد.
نتيجهگيري: اﮔﺮﭼﻪ ﻓﺮآﻳﻨﺪ اﻧﻌﻘﺎد، درﺻﺪ ﺑﺎﻻﻳﻰ از ﺑﺎر آﻟﻮدﮔﻰ ﻣﻮﺟﻮد در ﻓﺎﺿﻼب را ﻛﺎﻫﺶ ودرصد تجزيه پذيري را افزايش ﻣﻰدﻫﺪ، اﻣﺎ تصفيه بيشتر پساب براي تخليه به محيط زيست ضروري ميباشد.
- فاضلاب نساجي، رنگ زا، انعقاد، تجزيهپذيري بيولوژيکي
ارجاع به مقاله
مراجع
Dos Santos AB, Cervantes FJ, van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology 2007; 98(12):2369-85.
Gulkaya I, Surucu GA, Dilek FB. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials 2006; 136(3):763-69.
Daneshvar N, Salari D, Khataee A. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A: Chemistry 2004; 162(2):317-22.
Mahmoodi NM, Salehi R, Arami M, Bahrami H. Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 2011; 267(1):64-72.
Cengiz S, Tanrikulu F, Aksu S. An alternative source of adsorbent for the removal of dyes from textile waters:
Posidonia oceanica (L.). Chemical Engineering Journal 2012; 189:32-40.
Haque MM, Smith WT, Wong DK. Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters. Journal of Hazardous Materials 2015; 283:164-70.
Raman CD, Kanmani S. Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management 2016; 177:341-55.
Zhang H, Zhang J, Zhang C, Liu F, Zhang D. Degradation of CI Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics Sonochemistry 2009; 16(3):325-30.
Gozálvez-Zafrilla J, Sanz-Escribano D, Lora-García J, Hidalgo ML. Nanofiltration of secondary effluent for wastewater reuse in the textile industry. Desalination 2008; 222(1-3):272-79.
Pham TTH, Phan DH. Color and cod removal of dyeing wastewater by combination treatment of coagulation
and fenton oxidation. Osaka: Annual Report of FY 2003, The Core University Program between Japan Society forthe Promotion of Science (JSPS) and National Centre for Natural Science and Technology (NCST); 2004:289-95.
Han G, Liang C-Z, Chung T-S, Weber M, Staudt C, Maletzko C. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research 2016; 91:361-70.
Zahrim A, Tizaoui C, Hilal N. Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination 2011; 266(1):1-16.
Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management 2012; 93(1):154-68.
Riera-Torres M, Gutiérrez-Bouzán C, Crespi M. Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 2010; 252(1):53-59.
Azbar N, Yonar T, Kestioglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004; 55(1):35-43.
Georgiou D, Aivazidis A, Hatiras J, Gimouhopoulos K. Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research 2003; 37(9):2248-50.
Rana S, Suresh S. Comparison of different Coagulants for Reduction of COD from Textile industry wastewater. Materials Today: Proceedings 2017; 4(2):567-74.
APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 21st ed. Washington DC: American Public Health Association; 2005.
Wawrzkiewicz M. Removal of CI Basic Blue 3 dye by sorption onto cation exchange resin, functionalized and non-functionalized polymeric sorbents from aqueous solutions and wastewaters. Chemical Engineering Journal
; 217:414-25.
Elemen S, Kumbasar EPA, Yapar S. Modeling the adsorption of textile dye on organoclay using an artificial neural network. Dyes and Pigments 2012; 95(1):102-11.
Merzouk B, Gourich B, Madani K, Vial C, Sekki A. Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination 2011; 272(1):246-53.
Yari A, Mahvi A, Mahmudiyan M, Safaiye Ghomi J, Safdari M, Emamiyan M. The process of coagulation,flocculation and advanced oxidation in effluent treatment of second refinery oil industries. Qom University of Medical Sciences Journal 2012; 6(2):69-75 (In Persian).
Selcuk H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments 2005; 64(3):217-22.
Arslan I. Treatability of a simulated disperse dye-bath by ferrous iron coagulation, ozonation, and ferrous ironcatalyzed ozonation. Journal of Hazardous Materials 2001; 85(3):229-41.
El-Gohary F, Badawy M, El-Khateeb M, El-Kalliny A. Integrated treatment of olive mill wastewater (OMW) bythe combination of Fenton’s reaction and anaerobic treatment. Journal of Hazardous Materials 2009; 162(2):1536- 41.
Qian F, Sun X, Liu Y. Removal characteristics of organics in bio-treated textile wastewater reclamation by a
stepwise coagulation and intermediate GAC/O3 oxidation process. Chemical Engineering Journal 2013; 214:112- 18. 27. Arafat HA. Simple physical treatment for the reuse of wastewater from textile industry in the Middle East.
Journal of Environmental Engineering and Science 2007; 6(1):115-22.
Ergas SJ, Therriault BM, Reckhow DA. Evaluation of water reuse technologies for the textile industry. Journal of Environmental Engineering 2006; 132(3):315-23.
Emongor V, Nkegbe E, Kealotswe B, Koorapetse I, Sankwasa S, Keikanetswe
- چکیده مشاهده شده: 467 بار
- PDF دانلود شده: 211 بار