پوشش نانوذرات آلومينا با پلي آنيلين جهت حذف يون آهن از محلول آبی
فصلنامه علمی پژوهشی بهداشت در عرصه,
دوره 2 شماره 3,
22 September 2015
,
صفحه 42-50
https://doi.org/10.22037/jhf.v2i3.8798
چکیده
زمينه و هدف: با توجه به بحران آب، جلوگيری از آلوده شدن منابع آب بسيار اهميت دارد. يکي از عوامل آلوده کننده آب، فلزات سنگين است که مقادير بيش از حد آن باعث ايجاد بيماریهای مختلف ميشود. اين مقاله جذب يون آهن از محلول آبي توسط نانوذرات آلومينای پوشش داده شده با پلیآنيلين را شرح ميدهد.
مواد و روشها: از روش سنتز مستقيم جهت پوشش فيلم پليآنيلين روي نانوذرات آلومينا استفاده شد. براي تعيين فاکتورهاي موثر در جذب از سيستم راکتور ناپيوسته استفاده گرديد. اثر پارامترهاي مختلف مانند زمان، دما، مقدار جاذب و pH در جذب مورد بررسي قرار گرفت. همچنين ايزوترمهای جذب در محدوده غلظت mg/L 150-10 يون آهن و معادلات سينتيکی جذب مورد مطالعه قرار گرفت.
يافتهها: بالاترين کارايی در حذف يون آهن در pH برابر 3، مدت زمان 120 دقيقه، جرم جاذب 1/0 گرم و دماي 24 درجه سانتيگراد بدست آمد و ماکزيمم ظرفيت جاذب برای يون آهن 66/45 ميليگرم به ازاي هر گرم جاذب محاسبه شد.
نتيجه گيري: اين مطالعه نشان داد که نانوذرات آلومينای پوشش داده شده با پلیآنيلين با توانايی جذب 83 درصد از محلولppm 50 يون آهن، جاذب موثری برای حذف يون آهن از محلولهای آبی است.
- نانوذره آلومينا
- پلي آنيلين
- جذب سطحي
- يون آهن
ارجاع به مقاله
مراجع
fiej A, Pyrzynska K. Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology 2007;58(1):49-52.
Hsieh S-H, Horng J-J. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. Journal of University of Science and Technology Beijing 2007;14(1):77-84.
kerlekopoulou A, Vayenas D. Ammonia, iron and manganese removal from potable water using trickling filters Desalination. 2007;210(1):225-35.
APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington DC: American Public Health Association; 1998.
WHO. Guidelines for drinking-water quality. 3rd ed. Geneva: World Health Organization 2004.
ISIRI. Drinking water- Physical and chemical specifications. 5th ed. Tehran: Institute of Standards and
Industrial Research of Iran 2009 (In Persian).
Yang H, Xu R, Xue X, Li F, Li G. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. Journal of Hazardous Materials 2008;152(2):690-98.
Saboyainsta LV, Maubois J-L. Current developments of microfiltration technology in the dairy industry. Le Lait. 2000;80(6):541-53.
Cheraghpour S, Alamdar Milani S, Salari M, Kiaee M. Separation of Fe (III) ions from acidic leach liquor of Metasummatite Saghand Ore by anion exchange resins. Journal of Nuclear Science And Technology 2008;3(45):28-32 (In Persian).
Kumar PS, Gayathri R, Arunkumar RP. Adsorption of Fe (III) ions from aqueous solution by Bengal Gram Husk powder: equilibrium isotherms and kinetic approach. Electronic Journal of Environmental, Agricultural and Food Chemistry 2010;9(6):1047-58.
Radnia H, Ghoreishi AA, Nagafpoor GH. Assessment of balance and synthetic Fe(II) by absorbent
chitosan at constant temperature. Proceedings of 1st Conference of Refining Technology on Environment
May 26-27; Tehran, Iran (In Persian).
Gorbani M, Ramezanian N, and Baghbani SM. The use of porous silica nanoparticles modified amino
acids to remove heavy metals from industrial effluents. Proceedings of 4th Conference on Water, Waste and Wastewater In the Oil and Energy Industry 2014 Jan. 16-18; Tehran, Iran (In Persian).
Huang K, Zhang Y, Long Y, Yuan J, Han D, Wang Z, et al. Preparation of highly conductive, self-assembled gold/polyaniline nanocables and polyaniline nanotubes. Chemistry-A European Journal 2006;12(20):5314-19.
Caner N, Kiran I, Ilhan S, Iscen CF. Isotherm and kinetic studies of Burazol Blue ED dye biosorption by dried anaerobic sludge. Journal of Hazardous Materials 2009;165(1):279-84.
Siddique M, Farooq R, Khalid A, Farooq A, Mahmood Q, Farooq U, et al. Thermal-pressure-mediated hydrolysis of Reactive Blue 19 dye. Journal of Hazardous Materials 2009;172(2):1007-12.
Bhaumik M, Maity A, Srinivasu V, Onyango MS. Removal of hexavalent chromium from aqueous
solution using polypyrrole-polyaniline nanofibers. Chemical Engineering Journal 2012;181:323-33.
Mellah A, Chegrouche S, Barkat M. The removal of uranium (VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. Journal of Colloid and Interface Science 2006;296(2):434-41.
Ho Y-S, McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal
;70(2):115-24.
Bahrami M, Boroomandnasab S, Kashkooli HA, Farrokhian Firoozi A, Babaei AA. Synthesis of magnetite nanoparticles (Fe3O4) and its efficiency in cadmium removal from aqueous solutions. Water and Wastewater 2013;24:54-62 (In Persian).
Zavar Mousavi SH, Arjmandi A. Removal of heavy metals from industrial wastewater by Sheep Gut
Waste. Water and Wastewater 2010;21(1):63-68 (In Persian).
Riahi Samani M, Borghei SM, Ouladi A, Chaichi MJ. Adsorption of chromium from aqueous solutions using polyaniline. Water and Wastewater 2011;22(3):2-9 (In Persion).
Çolak F, Atar N, Olgun A. Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: Kinetic, thermodynamic and equilibrium studies. Chemical Engineering Journal 2009;150(1):122-30.
Shekoohi R, Saghi MH, Ghaffari HR. The use of biomess of municipal wastewater refinery to iron removal from aqueous solutions with bio technology absorption. Proceedings of 2nd The National Conference on Water and Wastewater (Operational approach). 2008 Apr. 2-3; Tehran, Iran (In Persian).
- چکیده مشاهده شده: 308 بار
- PDF دانلود شده: 1160 بار