مدل سازی پیامد و تحلیل خطرات انفجار و آتش سوزی ناشی از انتشار گاز متان در یک پالایشگاه از به تفکیک فصول سرد و گرم سال
فصلنامه علمی پژوهشی بهداشت در عرصه,
دوره 7 شماره 4 (1398),
1 June 2020
,
صفحه 34-46
https://doi.org/10.22037/jhf.v7i4.25456
چکیده
زمینه و اهداف: گاز متان از جمله موادی با پتانسیل بالای آسیبرسانی است که امروزه بهصورت گسترده در صنایع فرآیندی و شیمیایی و در محیطهای انسانی استفاده میشود. این مطالعه با هدف پیشبینی پیامدهای احتمالی گاز مایع متان توسط نرمافزار ALOHA و به منظور انجام اقدامات ایمنی مناسب، جهت کاهش پیامدها انجام شد.
مواد و روشها: در این مطالعه با استفاده از نتایج مطالعات HAZOP، بدترین سناریوی ممکن انتخاب شد و در این مطالعه کاربردی توسط نرمافزار ALOHA سناریوهای احتمالی نشت گاز متان از مخزن، مدلسازی شد. در طول مدت مطالعه، کلیه موازین اخلاقی رعایت شد.
یافتهها: بر اساس یافتهها، تا حدود 39 متری اطراف مخزن گاز مایع متان غلظت این گاز ppm 400000 است که در محدوده PAC-3 بوده و خطر مرگ و تهدید زندگی افراد را دارد. در صورت نشت کامل تا فاصله 238 متری در اطراف مخزن، غلظت گاز متان، ppm 50000 است که برابر با حد پایین انفجار (LEL) گاز متان است. فشار موج انفجار ابر بخار ناشی از نشت متان، از مخزن تا فاصله 270 متری بیشتر از psi 1 است.
نتیجهگیری: عواقب ناشی از سمیت گاز متان در این پالایشگاه یکی از جدیترین خطراتی است که پرسنل را تهدید میکند. بنابراین طراحی یک برنامه واکنش اضطراری جهت محدود کردن اثرات احتمالی نشت گاز یک امر ضروری میباشد.
- گاز متان؛ مدلسازی پیامد؛ پالایشگاه
ارجاع به مقاله
مراجع
Lees F. Lees' Loss prevention in the process industries: Hazard identification, assessment and control: Butterworth-Heinemann; 2012.
- Pula R, Khan F, Veitch B, Amyotte P. A grid based approach for fire and explosion consequence analysis. Process Safety and Environmental Protection 2006; 84(2):79-91.
- Jung H, Ma J. A study on legal systems and politics to control chemicals-Focus on regulation of hazardous chemicals. Administrative Law Journal 2016; 44(44):191-222.
- Kim M-U, Moon KW, Sohn J-R, Byeon S-H. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States. International journal of Environmental Research and Public Health 2018; 15(5):1027. DOI: 10.3390/ijerph15051027
- Maure LC, Valdivia FAG, Machado NIC, Glistau E. Methodology for the management of risk in the storage and transport of hazardous substances. Acta Technica Corviniensis-Bulletin of Engineering 2019; 12(1):15-20.
- Fyffe L, Krahn S, Clarke J, Kosson D, Hutton J. A preliminary analysis of Key Issues in chemical industry accident reports. Safety Science 2016; 82:368-73.
- Li C, Ren J, Wang H. A system dynamics simulation model of chemical supply chain transportation risk management systems. Computers & Chemical Engineering 2016; 89:71-83.
- Sujan MA, Habli I, Kelly TP, Gühnemann A, Pozzi S, Johnson CW. How can health care organisations make and justify decisions about risk reduction? Lessons from a cross-industry review and a health care stakeholder consensus development process. Reliability Engineering & System Safety 2017; 161:1-11.
- Bellamy LJ. Exploring the relationship between major hazard, fatal and non-fatal accidents through outcomes and causes. Safety Science 2015; 71:93-103.
- Koller G, Fischer U, Hungerbühler K. Assessing safety, health, and environmental impact early during process development. Industrial & Engineering Chemistry Research 2000; 39(4):960-72.
- Samia C, Hamzi R, Chebila M. Contribution of the lessons learned from oil refining accidents to the industrial risks assessment. Management of Environmental Quality: An International Journal 2018; 29(4):643-65.
- Beheshti MH, Dehghan SF, Hajizadeh R, Jafari SM, Koohpaei A. Modelling the consequences of explosion, fire and gas leakage in domestic cylinders containing LPG. Annals of Medical and Health Sciences Research. 2018; 8:83-88.
- Moradi B, Jazani RK, Gheisvandi H, Tehrani GM. Risks management of Tube Bundle heat exchanger in the petrochemical industries using the Risk-Based Inspection approach. Journal of Health in the Field 2019;7(1):36-43 (In Persian).
- Akbarifard S, Sharifi MR, Qaderi K. Data on optimization of the Karun-4 hydropower reservoir operation using evolutionary algorithms. Data in Brief 2020:105048. DOI: 10.1016/j.dib.2019.105048
- Kulich M, Cáb S, Nos F, Bernatík A. Explosion risk assessments for facilities with compressed flammable gases. TRANSACTIONS of the VŠB–Technical University of Ostrava, Safety Engineering Series 2015; 10(2):13-19.
- Evans M. Modeling hydrochloric acid evaporation in ALOHA. New York: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of Ocean Resources Conservation and Assessment, Hazardous Materials Response and Assessment Division, 1993.
- Khakkar S, Ranjbarian M, Pouyakian M. Study of CFSES software compliance with Iranian national standards for fire safety assessment of commercial complexes. Journal of Health in the Field 2019; 7(1):26-35 (In Persian).
- Zarei E, Jafari M, Dormohammadi A, Sarsangi V. The role of modeling and consequence evaluation in improving safety level of industrial hazardous installations: A case study: Hydrogen production unit. Iran Occupational Health 2014; 10(6):29-41 (In Persian).
- Zoqi M, Doosti M. An approach towards designing a new sanitary landfill system for treatment of emissions from decomposition in urban gas network. Quarterly Journal of Environmental Science and Technology 2018; 20(3):117-26 (In Persian).
- Skytt T, Nielsen SN, Jonsson B-G. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability–A case study of Jämtland, Sweden. Ecological Indicators 2020; 110:105831. DOI: 10.1016/j.ecolind.2019.105831
- Assari MJ, Kalatpour O, Zarei E, Mohammadfam I. Consequence modeling of fire on Methane storage tanks in a gas refinery. Journal of Occupational Hygiene Engineering 2016; 3(1):51-59 (In Persian).
- Falsafi A, Mohebbi A, Baghaei A. Simulation of flammable and toxic gases released from condensate storage tank in a gas plant based on elevation change. Gas Processing Journal 2019; 7(2):53-66.
- Julio MA, Juan LC, Ángel GL, Alcides GF, Miño G. Methodologies MESERI, fire and explosion index, ALOHA, to determine safety zones in gas service stations. KnE Engineering 2020:329-46.
- Kamaei M, Alizadeh SSA, Keshvari A, Kheyrkhah Z, Moshashaei P. Risk assessment and consequence modeling of BLEVE explosion wave phenomenon of LPG spherical tank in a refinery. Health and Safety at Work 2016; 6(2):10-24 (In Persian).
- Tushman, Michael, and C. O'Reilly. Winning through Innovation: A Practical Guide to Leading Organizational Change and Renewal. Boston, MA: Harvard Business School Press; 2002.
- Avasthy A., Siddiqui N.A. Quantitative estimation of risk to community near an ammonia rail wagon loading facility. In: Siddiqui N., Tauseef S., Abbasi S., Rangwala A. Advances in fire and process safety. Singapore: Springer Transactions in Civil and Environmental Engineering, Springer, 2018.
- Ghajari A, Lotfali E, Azari M, Fateh R, Kalantary S. Fungal airborne contamination as a serious threat for respiratory infection in the hematology ward. Tanaffos. 2015;14(4):257.
- Pourbabaki R, Karimi A, Yazdanirad SJJoHitF. Modeling the consequences and analyzing the dangers of carbon disulfide emissions using ALOHA software in an oil refinery. Journal of Health in the Field 2019; 6(3):1-9 (In Persian).
- Jafari MJ, Gharari M, Kalantari S, Omidi L, Ghaffari M, Fardi GR. The influence of safety training on improvement in safety climate in construction sites of a firm. Safety Promotion and Injury Prevention 2015; 2(4):257-64 (In Persian).
- Abbaslou H, Karimi A. Modeling of Ammonia Emission in the Petrochemical Industry. Jundishapur Journal of Health Sciences 2019;11(3):e94101. DOI: 10.5812/jjhs.94101.
- چکیده مشاهده شده: 622 بار