Ganoderic Acid Production via Aerial Co-cultivation of Ganoderma lucidum with Bacillus subtilis and Aspergillus niger Using Bubble Column Bioreactor
Applied Food Biotechnology,
Vol. 11 No. 1 (2024),
18 November 2023
,
Page e7
https://doi.org/10.22037/afb.v11i1.43684
Abstract
Abstract
Background and Objective: Ganoderma lucidum, with its medicinal characteristics, is one of the most beneficial fungi in traditional Asian medicine. This fungus low efficiency of ganoderic acid production has limited its use as a valuable secondary metabolite. Environmental stresses and elicitors such as microbial volatile organic compounds in co-cultures can increase ganoderic acid production. To investigate effects of variables of co-culture time and volume on Ganoderma lucidum growth and ganoderic acid production, Bacillus subtilis and Aspergillus niger were aerially co-cultured with Ganoderma lucidum.
Material and Methods: To investigate fungus growth and production of ganoderic acid using bubble column bioreactor, effects of independent variables of temperature, initial inoculation, length-to-diameter ratio (L: D) and aeration were investigated using Taguchi method. Then, effects of co-culture of Ganoderma lucidum with Bacillus subtilis and Aspergillus niger under optimum conditions were investigated.
Results and Conclusion: Optimizing effects of co-culture time and volume variables led to 2.9-fold increases in production of ganoderic acid, compared to the control sample. Optimization of biomass production in the bioreactor showed that biomass production increased significantly by increasing the initial inoculation percentage and temperature. These two variables significantly affected ganoderic acid production and its optimum production point was 10% of initial inoculation, temperature of 25.6 °C, L: D of 4:8 and aeration rate of 0.64 vvm. Gas holdup investigation for air-water and air-fermentation media systems showed that the presence of suspended solids and aeration rate affected gas holdup. Microbial volatile organic compounds in co-culture of microorganisms can increase ganoderic acid production by Ganoderma lucidum.
Conflict of interest: The authors declare no conflict of interest.
- Ganoderma lucidum
- Ganoderic acid
- Aerial co-cultivation
- Bubble column bioreactor
- Taguchi method
How to Cite
References
Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: A review. 3 Biotech. 2012; 2: 1-15.
http://doi.org/10.1007/s13205-011-0036-2
Yim HS, Chye FY, Rao V, Low JY, Matanjun P, How SE, Ho CW. Optimization of extraction time and temperature on anti-oxidant activity of Schizophyllum commune aqueous extract using response surface methodology. J Food Sci Technol. 2013; 50: 275-283.
http://doi.org/10.1007/s13197-011-0349-5
Aly AH, Debbab A, Proksch P.Fifty years of drug discovery from fungi. Fungal Divers. 2011; 50: 3-19.
http://doi.org/10.1007/s13225-011-0116-y
Kohda H, Tokumoto W, Sakamoto K, Fujii M, Hirai Y, Yamasaki K, Komoda Y, Nakamura H, Ishihara S, Uchida M. The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release-inhibitory triterpenes. Chem Pharm Bull. 1985; 33: 1367-1374.
http://doi/org/10.1248/cpb.33.1367
Li YY, Mi ZY, Tang Y, Wang G, Li DS, Tang YJ. Lanostanoids isolated from Ganoderma lucidum mycelium cultured by submerged fermentation. Helvetica Chimica Acta. 2009; 92: 1586-1593.
http://doi.org/10.1002/hlca.200900028
Sheikha AFEl. Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as functional foods: Current scenario and future perspectives. Foods. 2022; 11: 1030.
http://doi.org/10.3390/foods11071030
Pillai TG, Nair CK. Janardhanan, enhancement of repair of radiation induced DNA strand breaks in human cells by Gano-derma mushroom polysaccharides. Food Chem. 2010; 119: 1040-1043.
http://doi.org/10.1016/j.foodchem.2009.08.013
Heydarian M, Hatamian ZA, Amoabediny G, Yazdian F, Doryab A. Synergistic effect of elicitors in enhancement of ganoderic acid production: Optimization and gene expression studies. Appl Food Biotechnol. 2015; 5(2): 57-62
http://doi.org/10.22037/afb.v2i3.8715
Paterson RRM. Ganoderma a therapeutic fungal biofactory. Phytochem. 2006; 67: 1985-2001.
http://doi.org/10.1016/j.phytochem.2006.07.004
Wu GS, Guo JJ, Bao JL, Li XW, Chen XP, Lu JJ, Wang YT. Anti-cancer properties of triterpenoids isolated from Ganoder-ma lucidum a review. Expert Opin Inves Drugs. 2013; 22: 981-992.
http://doi.org/10.1517/13543784.2013.805202
Huang SM, Yang XL, Zhu HS. editors. Antitumor Effects of triterpene acids extracted from Ganoderma lucidum. 2011 International Conference on Remote Sensing, Environ Transport Eng. 2011: IEEE.
http://doi.org/10.1109/RSETE.2011.5966079
Xia Q, Zhang H, Sun X, Zhao H, Wu L, Zhu D, Yang G, Shao Y, Zhang X, Mao X. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules. 2014; 19: 17478-17535.
http://doi.org/10.3390/molecules191117478
Komoda Y, Shimizu M, Sonoda Y, Sato Y. Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem Pharm Bull. 1989; 37: 531-533.
http://doi.org/10.1248/cpb.37.531
Wu GS, Lu JJ, Guo JJ, Li YB, Tan W, Dang YY, Zhong ZF, Xu ZT, Chen XP, Wang YT. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 2012; 83: 408-414.
http://doi.org/10.1016/j.fitote.2011.12.004
Johnson BM, Doonan BP, Radwan FF, Haque A. Ganoderic acid DM: An alternative agent for the treatment of advanced prostate cancer. Open Prostate Cancer J. 2010; 3: 78.
http://doi.org/10.2174/1876822901003010078
Li Y-Q, Wang S-F. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol Let. 2006; 28: 837-841.
http://doi.org/10.1007/s10529-006-9007-9
Min B-S, Nakamura N, Miyashiro H, Bae K-W, Hattori M. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull. 1998; 46: 1607-1612.
http://doi.org/10.1248/cpb.46.1607
Shi L, Ren A, Mu D, Zhao M. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl Microbiol Biotechnol. 2010; 88: 1243-1251.
http://doi.org/10.1007/s00253-010-2871-1
Esmaelifar M, Hatamian-Zarmi A, Alvandi H, Azizi M, Mokhtari-Hosseini ZB, Ebrahimi-Hoseinzadeh B. Optimiza-tion of antioxidant activities and intracellular polysaccharide contents using agaricus bisporus extract as elicitor in submer-ged fermenting Ganoderma Lucidum. Appl Food Biotechnol. 2021; 8: 297-306.
http://doi.org/10.22037/afb.v8i4.35155
Tang Y-J, Zhang W, Liu R-S, Zhu L-W, Zhong J-J.Scale-up study on the fed-batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysac-charides. Process Biochem. 2011; 46: 404-408.
http://doi.org/10.1016/j.procbio.2010.08.013
Heydarian M, Hatamian-Zarmi A, Amoabediny G, Ebrahimi-Hosseinzadeh B, Alvandi H, Doryab A, Salehi A. Growth kinetics and ganoderic acid production from Ganoderma lucidum GIRAN17: A real-time monitoring platform. Iran J Medical Microbiol. 2021; 15: 67-84.
http://doi.org/10.30699/ijmm.15.1.67
Zhen XT, Chen Y, Yu YL, Shi MZ, Yan TC, Yue ZX, Gu YX, Zheng H, Cao J. In situ effervescence reaction assisted mecha-nochemical extraction of ganoderic acids from Ganoderma lucidum. Ind Crop Prod. 2021; 168: 113577.
http://doi.org/10.1016/j.indcrop.2021.113577
Sun B, You H, Xu JW. Enhancement of ganoderic acid produc-tion by promoting sporulation in a liquid static culture of Ganoderma species. J Biotechnol. 2021; 328:72-77.
http://doi.org/10.1016/j.jbiotec.2021.01.014
Tao Y, Han X, Ren A, Li J, Song H, Xie B, Zhao M. Heat stress promotes the conversion of putrescine to spermidine and plays an important role in regulating ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol. 2021; 105: 5039-5051.
http://doi.org/10.1007/s00253-021-11373-0
Schulz-Bohm K, Zweers H, De Boer W, Garbeva P. A fragrant neighborhood: Volatile mediated bacterial interactions in soil. Front Microbiol. 2015; 6: 1212.
http://doi.org/10.3389/fmicb.2015.01212
Kalantari-Dehaghi S, Hatamian-Zarmi A, Ebrahimi-Hossein-zadeh B, Mokhtari-Hosseini ZB, Nojoki F, Hamedi J, Hossein-khani S. Effects of microbial volatile organic compounds on Ganoderma lucidum growth and ganoderic acids production in Co-v-cultures (volatile co-cultures). Prep Biochem Biotechnol. 2019; 49: 286-297.
http://doi.org/10.1080/10826068.2018.1541809
Asadi F, Barshan-Tashnizi M, Hatamian-Zarmi A, Davoodi-Dehaghani F, Ebrahimi-Hosseinzadeh B. Enhancement of exopolysaccharide production from Ganoderma lucidum using a novel submerged volatile co-culture system. Fungal Biol. 2021; 125: 25-31.
http://doi.org/10.1016/j.funbio.2020.09.010
Hatamian-Zarmi A, Tasharofi Z, Alvandi H , BarshanTashnizi M, Ebrahimi-Hosseinzadeh B, Hosseini ZBM. A kinetic model-ing of growth and mycelial exopolysaccharide production by lentinus edodes (Shiitake Edible Mushroom). Appl Food Biotechnol. 9: 67-78.
http://doi.org/10.22037/afb.v9i1.36579
Fang QH, Zhong JJ. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive meta-bolites-ganoderic acid and polysaccharide. Bioch Eng J. 2002; 10: 61-65.
http://doi.org/10.1016/S1369-703X(01)00158-9
Chisti Y, Moo-Young M. Gas holdup behaviour in fermentation broths and other non-Newtonian fluids in pneumatically agitated reactors. Chem Eng J. 1988; 39: B31-B36.
http://doi.org/10.1016/0300-9467(88)80028-5
Kawase Y, Umeno S, Kumagai T.The prediction of gas hold-up in bubble column reactors: Newtonian and non-newtonian fluids. Chem Engin J. 1992; 50: 1-7.
http://doi.org/10.1016/0300-9467(92)80001-Q
Ribeiro LS, de Souza ML, Lira JMS, Schwan RF. Batista LR, Silva CF.Volatile compounds for biotechnological applications produced during competitive interactions between yeasts and fungi. J Basic Microbiol. 2023; 63: 658-667.
http://doi.org/10.1002/jobm.202200409
Giorgio A, De Stradis A, Lo Cantore P, Iacobellis NS. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on sclerotinia sclerotiorum. Front Microbiol. 2015; 6: 1056.
http://doi.org/10.3389/fmicb.2015.01056/
Zadrazil F. Influence of CO2 concentration on the mycelium growth of three pleurotus species. Euro J Appl Microbiol. 1975; 1: 327-335.
http://doi.org/10.1007/BF01382692
Cho JY, Sadiq NB, Kim JC, Lee B, Hamayun M, Lee TS, Kim HS, Park SH, Nho CW, Kim HY. Optimization of antioxidant, antidiabetic and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chem. 2021; 335: 127645.
http://doi.org/10.1016/j.foodchem.2020.127645
Nojoki F, Hatamian-Zarmi A, Mir-Drikvand M, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB, Kalantari-Dehaghi S, Esmaeilifar M. Impact of rifampin induction on the ferment-ation production of ganoderic acids by medicinal mushroom Ganoderma lucidum. Appl Food Biotechnol. 2016; 3: 91-98.
http://doi.org/10.22037/afb.v3i2.10797
Yan MQ, Su XW, Liu YF, Tang CH, Tang QJ, Zhou S, Tan Y, Liu LP, Zhang JS, Feng J. Effects of oleic acid addition methods on the metabolic flux distribution of ganoderic acids R, S and T’s biosynthesis. J Fungi. 2022; 8: 615.
http://doi.org/10.3390/jof8060615
Darzian Rostami A, Yazdian F, Mirjani R, Soleimani M. Effects of different graphene‐ased nanomaterials as elicitors on growth and ganoderic acid production by Ganoderma lucidum. Biotechnol Progress. 2020; 36: e3027.
http://doi.org/10.1002/btpr.3027
Li P, Deng YP, Wei XX, Xu JH. Triterpenoids from Ganoder-ma lucidum and their cytotoxic activities. Nat Prod. Res.. 2013; 27: 17-22.
http://doi.org/10.1080/14786419.2011.652961
Liu GQ, Wang XL, Han WJ, Lin QL. Improving the ferment-ation production of the individual key triterpene ganoderic acid me by the medicinal fungus Ganoderma lucidum in submerged culture. Molecule. 2012; 17: 12575-12586.
http://doi.org/10.3390/molecules171112575
Ren A, Qin L, Shi L, Dong X, Li YX, Zhao MW. Methyl jasmonate induces ganoderic acid biosynthesis in the basidio-mycetous fungus Ganoderma lucidum. Bioresour Technol. 2010; 101: 6785-6790.
- Abstract Viewed: 535 times
- pdf Downloaded: 440 times