Applied Food Biotechnology
  • Register
  • Login
  • English
    • فارسی
    • العربية
    • 简体中文
  • Home
  • Issues
    • Current
    • Archives
    • Accepted Manuscripts
    • In Press
  • About the Journal
    • Editorial Team
    • Privacy Statement
    • Reviewing Policies and Procedures
    • Plagiarism Policy
    • Archiving Policy
    • Contact
  • For Authors
    • Author Guidelines
    • Journal Cover Letter
    • Copyright Form
    • Conflict of Interest
    • Template of Research/Original Paper
  • Template of Research/Original Paper
  • Training Course
Advanced Search
  1. Home
  2. Archives
  3. Vol. 11 No. 1 (2024): Continuous
  4. Short Communication

Vol. 11 No. 1 (2024)

November 2023

Effects of Pasteurization on Antihyperglycemic and Chemical Parameter of Xoconostle (Stenocereus stellatus) Juice

  • Jose Alberto Mendoza-Espinoza
  • Sindu Irais Gomez-Covarrubias
  • Edgar Sierra Palacios
  • Erika Alvarez-Ramirez
  • Rayn Clarenc Aarland
  • Fernado Rivera-Cabrera
  • Rocio Gomez-Cansino
  • Patricia Bustamante-Camilo
  • Fernando Diaz de Leon-Sanchez

Applied Food Biotechnology, Vol. 11 No. 1 (2024), 18 November 2023 , Page e4
https://doi.org/10.22037/afb.v11i1.43252 Published: 2023-12-10

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Background and Objective: The antihyperglycemic effect is associated with the pre-hispanic fruit xoconostle or tunillo (Stenocereus stellatus, Pfeiffer and Riccobono). This fruit includes in various varieties, distinguished by color. Xoconostle fruits are highly perishable. Therefore, the aim of this study was to assess antihyperglycemic effects of xoconostle juice before (fresh) and after pasteurization. The study focused on the white and red varieties of xoconostle.

Material and Methods: In this study, the method involved collecting juice from xoconostle fruits, followed by pasteurization. Chemical, physical and microbial parameters were assessed for the juice and the ability to decrease capillary glucose levels (antihyperglycemic effect) was assessed in male Wistar rats.

Results and Conclusion: Pasteurization process led to decreases in total phenolic content of the red variety of xoconostle fruit, while the white variety showed increases in malic acid content. Despite these changes, fresh and pasteurized juices of the two varieties showed lower blood glucose levels, compared to the control group. Red variety demonstrated a stronger antihyperglycemic effect. In conclusion, pasteurization did not affect pharmacological effects of xoconostle juice, making it a viable preservation method without compromising the antihyperglycemic charac-teristics. Results of this research suggest a conservation method which preserve the antihyperglycemic effects while extending its shelf life.

Conflict of interest: The authors declare no conflict of interest.

Keywords:
  • Blood glucose-levels
  • Pasteurization
  • Prehispanic fruit
  • Sweet-xoconostle
  • pdf

How to Cite

Mendoza-Espinoza, J. A., Gomez-Covarrubias, S. I., Sierra Palacios, E., Alvarez-Ramirez, E., Aarland, R. C., Rivera-Cabrera, F., Gomez-Cansino, R., Bustamante-Camilo, P., & Diaz de Leon-Sanchez, F. (2023). Effects of Pasteurization on Antihyperglycemic and Chemical Parameter of Xoconostle (Stenocereus stellatus) Juice. Applied Food Biotechnology, 11(1), e4. https://doi.org/10.22037/afb.v11i1.43252
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Damian-Medina K, Salinas-Moreno Y, Milenkovick D, Figueroa-Yanez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon. 2020; 6: e03632.https://doi.org/10.1016/j.heliyon.2020.e03632

Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: A concise review. J Food Biochem. 2022, (10):e14264.https://doi.org/10.1111/jfbc.14264

Cao H, Ou J, Chen L, Zhang Y, Szkudelski T, Delmas D, Daglia M, Xiao J. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Crit Rev Food Sci Nutr. 2019; 59(20), 3371-3379. https://doi.org/10.1080/10408398.2018.1492900

Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of polyphenols in combating type 2 diabetes and insulin resistance. Int J Biol Macromol, 2022, 1(206), 567-579.

Dias TR, Alves MG, Casal S, Oliveira PF, Silva BM. Promising potential of dietary (poly)phenolic compounds in the prevention and treatment of diabetes mellitus. Curr Med Chem. 2017; 24(4), 334-354. https://doi.org/10.2174/0929867323666160905150419

Chel-Guerrero LD, Sauri-Duch E, Fragoso-Serrano M, Perez-Flores LJ, Gomez-Olivares JL, Salinas-Arreortua N, Sierra-Palacios E, Mendoza-Espinoza JA. Phyto-chemical profile, toxicity and pharmacological properties of tropical fruit peels using in vivo e in vitro Models. J Med Food. 2018; 21(7), 734-743.

Chel-Guerrero LD, Cuevas-Glory LC, Sauri-Duch E, Sierra-Palacios E, Diaz de Leon-Sanchez F, Mendoza-Espinoza JA. Tropical fruit peels as sources of bioactive compounds: + review. Pak J Bot. 2022; 54(3), 1169-1179.

Cao H, Xie Y, Chen X. Type 2 Diabetes diminishes the benefits of dietary antioxidants: Evidence from the different free radical scavenging potential. Food Chem. 2015; 186: 106-112. https://doi.org/10.1016/j.foodchem.2014.06.027

Keskin-Sasic I, Tahirovic I, Topcagic A, Klepo L, Salihovic M, Ibragic S, Toromanovic J, Ajanovic A, Velispahic E. Total phenolic content and antioxidant capacity of fruit juices. Glas Hem Tehnol Bosne Herceg. 2012; 39: 25-28.

Sahari M, Berenji-Ardestani S. Bio-antioxidants activity: Their mechanisms and measurement methods. Appl Food Biotechnol. 2014; 2(1), 3-8. https://doi.org/10.22037/afb.v2i1.7747

Nouri E, Abbasi H. Effects of different processing methods on phytochemical compounds and antioxidant activity of Spirulina platensis. Appl Food Biotechnol. 2018, 5(4), 221-232. https://doi.org/10.22037/afb.v5i4.20715

Salimi F, Almasi F, Mohammadipanah F, Ali Abdalla M. A comparative review of plant and microbial antioxidant secon-dary metabolites: Plant versus microbial antioxidants. Appl Food Biotechnol, 2022, 9(2), 173-194. https://doi.org/10.22037/afb.v9i2.36170

Garcia-Cruz L, Duenas M, Santos-Buelgas C, Valle-Guadar-rama S, Salinas-Moreno, Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chem, 2016, 234, 111-118. https://doi.org/10.1016/j.foodchem.2017.04.174

Cervantes C, Roman- Guerrero A, Oidor-Chan VH, Diaz de Leon-Sanchez F, Alvarez-Ramirez EL, Pelayo-Saldivar C, Sierra-Palacios E, Mendoza-Espinoza JA. Chemical character-ization, antioxidant capacity and anti-hyperglycemic effect of Stenocereus stellatus fruits from the aird Mixteca Baja region of Mexico. Food Chem. 2020; 328:1-9.

https://doi.org/10.1016/j.foodchem.2020.127076.

Contreras-Castro AI, Oidor-Chan VH, Bustamante-Camilo P, Pelayo-Zaldivar C, Diaz de Leon-Sanchez F, Mendoza-Espinoza JA. Chemical characterization and evaluation of the antihyperglycemic effect of Lychee (Litchi chinensis Sonn.) cv. Brewster. J Med Food. 2022. 25(1), 61-69. http://doi.org/10.1089/jmf.2021.0098

Ponce-Sanchez C, Oidor-Chan VH, Alvarez-Ramirez EL, Gomez-Cansino R, Zarza-García AL, Gomez-Olivares JL, Diaz de-Leon-Sanchez F, Mendoza-Espinoza JA. Chemical profile and study of the antidiabetic effect of Annona squamosa L. peel, Waste Biomass Valor. 2023. https://doi.org/10.21203/rs.3.rs-1951602/v1

Kumar M, Changan S, Tomar M, Prajapati U, Saurabh V, Hasan M, Sasi M, Maheshwari C, Singh S, Dhumal S, Radha, Thakur M, Punia S, Satankar V, Amarowicz R, Mekhemar M. Custard apple (Annona squamosa L.) leaves: nutritional composition, phytochemical profile and health-promoting biological activities. Biomolecule 2021; 21:11(5). 614. https://doi.org/10.3390/biom11050614

Ma C, Chen Y, Chen J, Li X, Chen Y. A review on Annona squamosa L.: Phytochemicals and biological activities. Am J Chin Med. 2017; 45(5): 933-964. https://doi.org/10.1142/S0192415X17500501

Luna C, Aguirre J, Pena C. Cultivares tradicionales mixtecos de Stenocereus pruinosus y S. stellatus (Cactaceae). Botanica 2001; 72: 131-155.

Diaz de Leon- Sanchez F, Hernandez-Trigueros PD, Oidor-Chang VH, Cervantes-Arista C, Aarland R, Sierra-Palacios E, Mendoza-Espinoza JA. Chemical composition of juice and antihyperglycemic studies in seed of the pre-hispanic fruit tunillo (Stenocereus stellatus) collected in Oaxaca, Mexico. Ind J Trad Know. 2020, 19: 580-584. https://doi.org/10.56042/ijtk.v19i3.41476

Gomez-Covarrubias SI, Rivera-Cabrera F, Mendoza-Gastelum JI, Oidor-Chan VI, Aarland RC, Cruz-Sosa F, Diaz de Leon-Sanchez F, Mendoza-Espinoza JA. Effect of pasteurization on chemical and functional properties of Xoconostle (Opuntia joconostle), Juice. J Food Qual Hazards Control. 2020, 7:11-17. https://doi.org/10.18502/jfqhc.7.1.2447

Miao J, Guo X, Liu W, Yang D, Shen Z, Qiu Z, Chen X, Zhang K, Hu H, Yin J, Yang Z, Li J, Jin M. Total coliforms as an indicator of human enter virus presence in surface water across Tianjin city, China. BMC Infect Dis. 2018; 1:18(1):542.

https://doi.org/10.1186/s12879-018-3438-5

Mendoza-Espinoza JA, Pena-Miranda I, Aarland RC, Peralta-Gómez S, Sierra-Palacios E, Garcia-Ocon B. Pharmacological and phytochemical potential study of plants collected in Amecameca, State of Mexico, Mexico. Ind J Trad Know, 2016, 15: 62-67.

Silva R, Cruz A, Faria J, Moura M, Carvalho L, Water E, SantAna A. Pasteurized milk: Efficiency of pasteurization and its microbiological conditions in Brazil. Foodborne Pathog Dis. 2010, 7(2): 217-219.

https://doi.org/10.1089/fpd.2009.0332

Sadowska-Bartosz I, Bartosz G. Biological properties and applications of betalains. Molecules. 2021, 26: 2520.

https://doi.org/10.3390/molecules26092520

Herbach KM, Stintzing FC, Carle R. Thermal degradation of betacyanins in juices from purple pitaya (Hylocereus polyrhizus [Weber] Britton and Rose) monitored by high-performance liquid chromatography-tandem mass spectrometric analyses. Eur Food Res Technol. 2004; 219: 377-385.

Garcia-Cruz L, Duenas M, Santos-Buelgas C, Valle-Guadarrama S, Salinas-Moreno Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chem. 2017, 1(234):111-118. https://doi.org/10.1016/j.foodchem.2017.04.174

Bobadilla M, Hernandez C, Ayala M, Alonso I, Iglesias A, Garcia-Sanmartin J, Mirpuri E, Barriobero JI, Martínez A. A grape juice supplemented with natural grape extracts is well accepted by consumers and reduces brain oxidative stress. Antioxid. 2021; 10(5): 677. https://doi.org/10.3390/antiox10050677

Ferreira RM, Costa AM, Pinto CA, Silva AMS, Saraiva JA, Cardoso SM. Impact of fermentation and pasteurization on the physico-chemical and phytoche-mical composition of Opuntia ficus indica juices. Foods. 2023; 12(11): 2096. https://doi.org/10.3390/foods12112096

Tokuşoglu O. Effect of high hydrostatic pressure processing strategies on retention of antioxidant phenolic bioactives in foods and beverages - A review. Polish J Food Nutr Sci. 2016; 66: 243-251.

  • Abstract Viewed: 471 times
  • pdf Downloaded: 522 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Developed By

Open Journal Systems

Language

  • English
  • فارسی
  • العربية
  • 简体中文

Information

  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

AWT IMAGE

The journal of "Applied Food Biotechnology" is licensed under a  CC BY-NC 4.0. International License.

Powered by OJSPlus