Germination and Fermentation of Soybeans: Two Healthy Steps to Release Angiotensin Converting Enzyme Inhibitory Activity Compounds
Applied Food Biotechnology,
Vol. 6 No. 4 (2019),
24 Mehr 2019
,
Page 201-215
https://doi.org/10.22037/afb.v6i4.25475
Abstract
Background and objective: Soybean is one of the most important grains with high proteins, good quality edible oils, appreciable amount of minerals and vitamins. Due to some disadvantages soybeans’ compounds affecting the flavor, odor and stability, different types and levels of processing are considered to make better products with healthy properties. Hypertension (high blood pressure) is one of the modern world diseases, which increases the risk of serious human health problems. There are several systems in humans’ body e.g. angiotensin converting enzyme regulator to blood pressure control. The aim of the present review is to report the effect of germination and fermentation on the concentration of bioactive compounds with angiotensin converting enzyme inhibitory properties.
Results and conclusion: Many scientific research has demonstrated that germination (sprouting, also known as malting) and fermentation are two effective and inexpensive technologies improving soybean quality. During these two processes, anti-nutritional and bioactive compounds affecting human health e.g. anti-hypertension components have been removed and released, respectively. Furthermore, studies have shown effect of soybean isolated compounds to inhibit angiotensin converting enzyme. Therefore, soybean germination and fermentation could affect the concentration of bioactive compounds with angiotensin converting enzyme inhibitory properties.
Conflict of interest:The authors declare no conflict of interest.
- ▪ Angiotensin converting enzyme inhibitory ▪ Bioactive compounds ▪ Fermentation ▪ Germination ▪ Hypertension ▪ Soybean
How to Cite
References
Rawat, P., Singh, P. K., & Kumar, V. (2016). Anti-hypertensive Medicinal Plants and their Mode of Action. Journal of Herbal Medicine, 2016; :1-28. doi: 10.1016/j.hermed.2016.06.001
Bhatnagar, M., Attri, S., Sharma, K., & Goel, G. (2017). Lactobacillus paracasei CD4 as potential indigenous lactic cultures with antioxidative and ACE inhibitory activity in soymilk hydrolysate. Journal of Food Measurement and Characterization, 2017; 1-6. doi: 10.1007/s11694-017-9715-y
Garcı´a, M., Puchalska, P., Esteve, C., & Marina, M. foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta, 2013; 106: 328–349. doi: 10.1016/j.talanta.2012.12.041
Mora-Escobedo, R., BERRIOS, J., Seeds as functional foods and nutraceticals. Nova. New york. 2014.
Gibbs, B., Zougman, A., & Masse, R. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. food research international, 2004; 13:123–131. doi:10.1016/j.foodres.2003.09.010
Hanafi, M., Hashim, S., & Yea, C. High angiotensin-I converting enzyme (ACE) inhibitory activity of Alcalasedigested green soybean (Glycine max) hydrolysates. Food Research International, 2018; 106: 589–597. doi : 10.1016/j.foodres.2018.01.030
Vallabha, V. S., & Tiku, P. Antihypertensive Peptides Derived from Soy Protein by Fermentation. Int J Pept Res Ther, 2013; 1-8. doi: 10.1007/s10989-013-9377-5
Mejia, E., & Dia, V. P. Chemistry and Biological Properties of Soybean Peptides and Proteins. In K. Cadwallader, American Chemical Society (pp. 1-22). Urbana. 2010; 1-22. doi: 10.1021/bk-2010-1059.ch009
Sanjukta, S., & Rai, A. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology, 2016; 50:1-10. doi: 10.1016/j.tifs.2016.01.010
- Da Silva, L., Celeghini, R., & Chang, Y. Effect of the fermentation of whole soybean flour on the conversion of isoflavones from glycosides to aglycones. Food Chemistry. 2011; 128:640–644. doi:10.1016/j.foodchem.2011.03.079
Yu , B., Lu, Z., & Xiao, Æ. Scavenging and anti-fatigue activity of fermented defatted soybean peptides. Eur Food Res Technol, 2008; 226: 415–421. doi: 10.1007/s00217-006-0552-1
Agyei, D. Bioactive Proteins and Peptides from Soybeans. Recent Patents on Food, Nutrition & Agriculture. 2015; 7: 1-9. doi: 10.2174/2212798407666150629134141
Reynolds, K., Chin, A., & Lees, K. A Meta-Analysis of the Effect of Soy Protein Supplementation on Serum Lipids. The American Journal of Cardiology, 2006; 1-8. doi: 10.1016/j.amjcard.2006.03.042
Rebholz, C., Reynolds, K., & Wofford, M. Effect of soybean protein on novel cardiovascular disease risk factors: a randomized controlled trial. European Journal of Clinical Nutrition, 2013; 67(1): 58–63. doi: 10.1038/ejcn.2012.186.
Rayaprolu, S., Hettiarachchy, N., & Horax, R. Soybean peptide fractions inhibit human blood, breast and prostate cancer cell proliferation. J Food Sci Technol, 2017; 1-7. doi: 10.1007/s13197-016-2426-2
Rayaprolu, S. J. Extraction, Purification and Characterization of a Pure Peptide from Soybean to Demonstrate Anti- Proliferation Activity on Human Cancer Cells and Test the Ability of Soy Peptide Fractions in Reducing the Activity of Angiotensin-I Converting Enzyme. University of Arkansas, Fayetteville: Theses and Dissertations. 2015; 1-164.
Paucar-Menacho, L., Berhow, M., & Mandarino, J. Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Research International, 2010; 43: 1856–1865. doi: 10.1016/j.foodres.2009.09.016
Villares, A., Rostagno, M., & García-Lafuente, A. Content and Profile of Isoflavones in Soy-Based Foods as a Function of the Production Process. Food Bioprocess Technol, 2011; 4:27–38. doi: 10.1007/s11947-009-0311-y
Jayathilake, C., Visvanathan, R., Deen, A., & Bangamuwage, R. Cowpea: an overview on its nutritional facts and health benefits. J Sci Food Agric, 2018; 98 (13): 4793-4806. doi: 10.1002/jsfa.9074
Yang, H., Park, S., & Pak, V. Fermented Soybean Products and Their Bioactive Compounds. In H. J. Yang, S. Park, & V. Pak, Soybean and Health. Korea Food Research Institute. 2011; 1-39. doi: 10.5772/10670
Mamilla, R., & Mishra, V. Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT - Food Science and Technology, 2017; 75: 51-58. doi: 10.1016/j.lwt.2016.08.036
Mostafa, M., & Rahma, E. Chemical and Nutritional Changes in Soybean During Germination. Food Chemistry 1987; 23: 257-275. doi: 10.1016/0308-8146(87)90113-0
Sanjukta, S., Rai, A., & Muhammed, A. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. journal of functional foods, 2015; 14:650–658. doi: 10.1016/j.jff.2015.02.033
Kwon, D., Hong, S., & Ahn, I. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition, 2011; 27: 244–252. doi:10.1016/j.nut.2010.02.004
Kim, H.-E., & Kim, Y.-S. Biological Activities of Fermented Soybean Paste (Doenjang) Prepared Using Germinated Soybeans and Germinated Black Soybeans during Fermentation. Food Sci. Biotechnol, 2014; 23(5): 1533-1540. doi: 10.1007/s10068-014-0209-y
Huang, X., Cai, W., & Xu, B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 2014; 143: 268–276. doi: 10.1016/j.foodchem.2013.07.080
Donkor , O., Stojanovska , L., Ginn , P., & Vasiljevic, T. Germinated grains – Sources of bioactive compounds. Food Chemistry, 2012; 135: 950–959. doi: 10.1016/j.foodchem.2012.05.058
Suberbie, F., Mendizrbal, D., & Mendizbal, C. Germination of Soybeans and Its Modifying on the Quality of Full-Fat Soy Flour. JAOCS, 1981; :192-194. doi: 10.1007/BF02582334
Miglani, H., & Sharma, S. Impact of Germination Time and Temperature on Phenolics, Bioactive Compounds and Antioxidant Activity of Different Coloured Soybean. The National Academy of Sciences, 2015; 1-10. doi: 10.1007/s40011-016-0744-9
Akhtaruzzaman, M., Rubel Mozumder, N., & Ripa , J. Isolation and characterization protease enzyme from leguminous seeds. Agricultural Science Research Journals, 2012; 8: 434-440.
Kim, S.-L., Lee, J.-E., & Kwon, Y.-U. Introduction and nutritional evaluation of germinated soy germ. Food Chemistry, 2013; 136: 491–500. doi: 10.1016/j.foodchem.2012.08.022
Singha, B., Vij, S., & Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides, 2014; 54:171–179. doi: 10.1016/j.peptides.2014.01.022
Zhang, J.-H., Tatsumi, E., & Ding, C.-H. Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chemistry, 2006; 58: 551–557. doi: 10.1021/jf903261h
Shimakage, A., Shinbo, M., & Yamada, S. ACE inhibitory substances derived from soy foods. J. Biol. Macromol, 2012; 12(3):72-80. doi: 10.14533/jbm.12.72
Xiao, Y., Sun, M., Zhang, Q., & Chen, Y. Effects of Cordyceps militaris (L.) Fr. fermentation on the nutritional, physicochemical, functional properties and angiotensin I converting enzyme inhibitory activity of red bean (Phaseolus angularis [Willd.] W.F. Wight.) flour. J Food Sci Technol, 2018; 1-12. doi: 10.1007/s13197-018-3035-z
Yimit, D., Hoxur, P., & Amat, N. Effects of soybean peptide on immune function, brain function, and neurochemistry in healthy volunteers. Nutrition, 2012; 28: 154–159. doi: 10.1016/j.nut.2011.05.008
Tsai , J., Lin, Y. S., Pan, B. S., & Chen, T. Antihypertensive peptides and g-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochemistry, 2006; 41:1282–1288. doi: 10.1016/j.procbio.2005.12.026
Slavin, J., Karr, S., & Hutchins , A. Influence of soybean processing, habitual diet and soy dose on urinary isoflavonoid excretion. American Society for Clinical Nutrition, 1998; 68(suppl):1492S–5S. doi: 10.1093/ajcn/68.6.1492S
Weng, T., & Chen, M. Effect of Two-Step Fermentation by Rhizopus oligosporus and Bacillus subtilis on Protein of Fermented Soybean. Food Sci. Technol. Res, 2011; 17(5): 393 – 400. doi: 10.3136/fstr.17.393
Toshiro, M., Hyung Jae, Y., & Jae Sung, H. Isolation of angiotensin I-converting enzyme inhibitory peptide from chungkookjang. Korean Journal of Microbiology, 2004; 40:355-358.
Kuba, M., Tanaka, K., & Tawata, S. Angiotensin I-Converting Enzyme Inhibitory Peptides Isolated from Tofuyo Fermented Soybean Food. Taylor & Francis, 2014; 67(6): 37-41. doi: 10.1271/bbb.67.1278
Li, F. J., & Yin, L. j. Angiiotensin I-Converting Enzyme Inhibitory Activities of Extracts from Commercial Chinese Style Fermented soy past. JARQ, 2010; 44(2): 167-172. doi: 10.6090/jarq.44.167
Moraes Filho, M. d., Busanello, M., Prudencio, S. H., & Garcia, S. Soymilk with okara flour fermented by Lactobacillus acidophilus: Simplex-centroid mixture design applied in the elaboration of probiotic creamy sauce and storage stability. LWT - Food Science and Technology, 2018; 1-39.doi: 10.1016/j.lwt.2018.03.046
Li, F.-J., Yin, L.-J., & Cheng, Y.-Q. Comparison of Angiotensin I-Converting Enzyme Inhibitor Activities of Pre- fermented Douchi (a Chinese Traditional Fermented Soybean Food) Started with Various Cultures. International Journal of Food, 2009; 5(2): 1-14. doi: 10.2202/1556-3758.1661
Teng , D., Gao, M., Yang, Y., & Liu, B. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatalysis andAgriculturalBiotechnology, 2012; 1: 32–38. doi:10.1016/j.bcab.2011.08.005
Nakahara, T., Sano, A., & Yamaguchi, H. Antihypertensive Effect of Peptide-Enriched Soy Sauce-Like Seasoning and Identification of Its Angiotensin I-Converting Enzyme Inhibitory Substances. J. Agric. Food Chem., 2010; 58: 821–827. doi: 10.1021/jf903261h
Nakajima, N., Nozaki, N., & Ishihara, K. Analysis of Isoflavone Content in Tempeh, a Fermented Soybean,and Preparation of a New Isoflavone-Enriched Tempeh. Journal of bioscience and bioengineering, 2005; 100: 685–687. doi: 10.1263/jbb.100.685
Jang, H.-J., Kokrashvili, Z., & Theodorakis, M. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Communicated by Linda M. Bartoshuk, University of Florida, 2007; 38: 1-6. doi: 10.1073_pnas.0706890104
Yang, H., Kim, H., & Kim, M. standardized chungkookjang, short-term fermented soy beans with Bacillus lichemiformis, improves glucose homeostasis as much as traditionally made chungkookjang in diabetic rats. Biochem. Nutr, 2012; 52(1): 49-57. doi: 10.3164/jcbn.12-54
Hang, M., & Zhao, X.-H. Fermentation time and ethanol/water-based solvent system impacted in vitro ACE-inhibitory activity of the extract of Mao-tofu fermented by Mucor spp. CyTA - Journal of Food, 2014; 37-41. doi: 10.1080/19476337.2011.601428
Ibe, S., Yoshida, K., & Kumada, K. Antihypertensive Effects of Natto, a Traditional Japanese Fermented Food, in Spontaneously Hypertensive Rats. Food Sci. Technol. Res, 2009; 15(2): 199 – 202. doi: 10.3136/fstr.15.199
Kitts, D., & Weiler, K. Bioactive Proteins and Peptides from Food Sources. Applications of Bioprocesses used in Isolation and Recovery. Current Pharmaceutical Design, 2003; (9): 1309-1323.
Korhonen, H., & Pihlanto, A. Food-derived Bioactive Peptides – Opportunities for Designing Future Foods. Current Pharmaceutical Design, 2003; (9): 1297-1308.
Puchalska, P., García, M., & Marina, M. Identification of native angiotensin-I converting enzyme inhibitory peptides in commercial soybean based infant formulas using HPLC-Q-ToF-MS. Food Chemistry, 2014; 157:62–69. doi: 10.1016/j.foodchem.2014.01.130
LO, W., & LI-CHAN, E. Angiotensin I Converting Enzyme Inhibitory Peptides from In Vitro Pepsin-Pancreatin Digestion of Soy Protein. J. Agric. Food Chem., 2005; 53: 3369-3376. doi: 10.1021/jf048174d
Shin, Z.-I., Yu, R., & Park, S. A. His-His-Leu, an Angiotensin I Converting Enzyme Inhibitory Peptide Derived from Korean Soybean Paste, Exerts Antihypertensive Activity in Vivo. J. Agric. Food Chem, 2001; 49:3004-3009. doi: 10.1021/jf001135r
Gobbetti, M., Ferranti, P., & Smacchi, E. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckiisubsp. Bulgaricus SS1and Lactococcus lactissubsp cremoris FT4. applied and environmental mocrobiology, 2000; 66(9): 1-8. doi: 10.1128/AEM.66.9.3898-3904.2000
Wu, F., & Xu, X. Sprouted grains-based fermented products. Elsevier. 2019; 1-31. doi: 10.1016/B978-0-12-811525-1.00007-5
- Abstract Viewed: 1148 times
- PDF Downloaded: 1113 times