Bacteria as a vehicle in cancer therapy and drug delivery
Archives of Advances in Biosciences,
Vol. 8 No. 1 (2017),
14 December 2016
,
Page 52-59
https://doi.org/10.22037/jps.v8i1.13574
Abstract
Although the conventional therapies have obviously improved the conditions of patients with cancer, some mechanisms of resistance have led scientists to use alternative agents that can penetrate in most solid tumors. Furthermore, the success of cancer therapies depends on limiting the uptake of toxins to normal tissues and their selectivity to malignant cells. The involvement of natural and genetically modified non-pathogenic bacterial species, as potential antitumor agents, has led scientists to study bacteria and their products as an ideal vector for delivering therapeutic components to tumors. Moreover, bacterial ghosts, microbots, and bactofection are the other strategies to destruct the malignant tissues. Although it has shown to achieve successful results in vivo, further investigations on the targeting mechanisms of the bacteria are needed to make it a complete therapeutic approach in cancer treatment.
- Bacteria
- Cancer
- Drug delivery
How to Cite
References
Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev cancer 2003;3(5):380-7.
Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev cancer 2005;5(12):965-76.
Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man. Acta Med Scand. 1953;145(1).
Bolhassani A, Zahedifard F. Therapeutic live vaccines as a potential anticancer strategy. Int J Cancer 2012;131(8):1733-43.
Morrissey D, O'Sullivan GC, Tangney M. Tumour targeting with systemically administered bacteria. Curr Gene Ther 2010;10(1):3-14.
Barbé S, Van Mellaert L, Anné J. The use of clostridial spores for cancer treatment. J Appl Microbiol 2006;101(3):571-8.
Richardson MA, Ramirez T, Russell NC, Moye LA. Coley toxins immunotherapy: a retrospective review. Altern Ther Health Med 1999;5(3):42.
Zacharski L, Sukhatme V. Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost 2005;3(3):424-7.
Barbé S, Van Mellaert L, Theys J, Geukens N, Lammertyn E, Lambin P, et al. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment. FEMS Microbiol Lett 2005;246(1):67-73.
Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res 1955;15(7):473-8.
Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of Sciences. 2001;98(26):15155-60.
Liu S, Minton N, Giaccia A, Brown J. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther 2002;9(4):291-6.
Wei MQ, Mengesha A, Good D, Anné J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett 2008;259(1):16-27.
Diaz LA, Cheong I, Foss CA, Zhang X, Peters BA, Agrawal N, et al. Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol Sci 2005;88(2):562-75.
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015;350(6264):1084-9.
Villatoro-Hernandez J, Montes-de-Oca-Luna R, Kuipers OP. Targeting diseases with genetically engineered Lactococcus lactis and its course towards medical translation. Expert Opin Biol Ther
;11(3):261-7.
Clairmont C, Bermudes D, Low K, Pawelek J, Pike J, Ittensohn M, et al., editors. VNP20009, a genetically modified Salmonella typhimurium: anti-tumor efficacy, toxicology, and biodistribution in preclinical models. Clin Cancer Res 1999: amer assoc cancer research po box 11806, birmingham, al 35202 usa.
Luo X, Ittensohn M, Low B, Pawelek J, Li Z, Ma X, et al., editors. Genetically modified Salmonella typhimurium inhibited growth of primary tumors and metastase. Proc Annu Meet Am Assoc Cancer Res 1999.
Ganai S, Arenas RB, Sauer JP, Bentley B, Forbes NS. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther 2011;18(7):457-66.
Trump DL, editor Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium: Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM, AntiCancer, San Diego, CA. Urologic Oncology: Seminars and Original Investigations; 2005: Elsevier.
Ganai S, Arenas R, Forbes N. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. British J Cancer 2009;101(10):1683-91.
Yuhua L, Kunyuan G, Hui C, Yongmei X, Chaoyang S, Xun T, et al. Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. Int J Cancer 2001;94(3):438-43.
Sorenson BS, Banton KL, Frykman NL, Leonard AS, Saltzman DA. Attenuated Salmonella typhimurium with interleukin 2 gene prevents the establishment of pulmonary metastases in a model of osteosarcoma. J Ped Surg 2008;43(6):1153-8.
Loeffler M, Le'Negrate G, Krajewska M, Reed JC. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther 2008;15(12):787-94.
Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol Immunother 2009;58(5):769-75.
Ryan R, Green J, Williams P, Tazzyman S, Hunt S, Harmey J, et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther 2009;16(3):329-39.
Grillot‐Courvalin C, Goussard S, Courvalin P. Wild‐type intracellular bacteria deliver DNA into mammalian cells. Cell Microbiol 2002;4(3):177-86.
Hense M, Domann E, Krusch S, Wachholz P, Dittmar KE, Rohde M, et al. Eukaryotic expression plasmid transfer from the intracellular bacterium Listeria monocytogenes to host cells. Cell Microbiol 2001;3(9):599-609.
Courvalin P, Goussard S, Grillot-Courvalin C. Gene transfer from bacteria to mammalian cells. Comptes rendus de l'Academie des sciences Serie III, Sciences de la vie 1995;318(12):1207-12.
Sizemore DR, Branstrom AA, Sadoff JC. Attenuated bacteria as a DNA delivery vehicle for DNA-mediated immunization. Vaccine 1997;15(8):804-7.
Darji A, Guzmán CA, Gerstel B, Wachholz P, Timmis KN, Wehland J, et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 1997;91(6):765-75.
Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotech 1998;16(9):862-6.
Al-Mariri A, Tibor A, Lestrate P, Mertens P, De Bolle X, Letesson J-J. Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect Immun 2002;70(4):1915-23.
Radulovic S, Brankovic-Magic M, Malisic E, Jankovic R, Dobricic J, Plesinac-Karapandzic V, et al. Therapeutic cancer vaccines in cervical cancer: phase I study of Lovaxin-C. J Buon 2009;14(Suppl 1):S165-S8.
Nougayrède J-P, Taieb F, De Rycke J, Oswald E. Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol 2005;13(3):103-10.
Sugai M, Hatazaki K, Mogami A, Ohta H, Pérès SY, Hérault F, et al. Cytotoxic necrotizing factor type 2 produced by pathogenic Escherichia coli deamidates a Gln residue in the conserved G-3 domain of the Rho family and preferentially inhibits the GTPase activity of RhoA and Rac1. Infect Immun 1999;67(12):6550-7.
Fiorentini C, Matarrese P, Straface E, Falzano L, Fabbri A, Donelli G, et al. Toxin-induced activation of Rho GTP-binding protein increases Bcl-2 expression and influences mitochondrial homeostasis. Exp Cell Res 1998;242(1):341-50.
Frankel AE, Rossi P, Kuzel TM, Foss F. Diphtheria fusion protein therapy of chemoresistant malignancies. Curr Cancer Drug Targets 2002;2(1):19-36.
Falnes PØ, Ariansen S, Sandvig K, Olsnes S. Requirement for prolonged action in the cytosol for optimal protein synthesis inhibition by diphtheria toxin. J Biol Chem 2000;275(6):4363-8.
Pastan I. Targeted therapy of cancer with recombinant immunotoxins. Biochimica et Biophysica Acta (BBA)-Rev Cancer 1997;1333(2):C1-C6.
Kokai-Kun JF, McClane BA. Determination of functional regions of Clostridium perfringens enterotoxin through deletion analysis. Clin Infect Dis 1997:S165-S7.
Kokai-Kun JF, Benton K, Wieckowski EU, McClane BA. Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Infect Immun 1999;67(11):5634-41.
Michl P, Buchholz M, Rolke M, Kunsch S, Löhr M, McClane B, et al. Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gastroenterol 2001;121(3):678-84.
Ansiaux R, Gallez B. Use of botulinum toxins in cancer therapy. Expert opinion on investigational drugs 2007;16(2):209-18.
Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson JP, et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotech 2007;2(7):441-9.
Hutchison CA, Sinsheimer RL. The process of infection with bacteriophage ΦX174: X. Mutations in a ΦX lysis gene. J Mol Biol 1966;18(3):429-IN2.
Young KD, Young R. Lytic action of cloned phi X174 gene E. J virol 1982;44(3):993-1002.
Barrell B, Air G, Hutchison C. Overlapping genes in bacteriophage φX174. J virol 1976.
Pollock TJ, Tessman E, Tessman I. Identification of lysis protein E of bacteriophage phiX174. J virol. 1978;28(1):408-10.
Denhardt DT, Sinsheimer RL. The process of infection with bacteriophage φX174: III. Phage maturation and lysis after synchronized infection. J Mol Biol 1965;12(3):641-6.
Bläsi U, Linke R, Lubitz W. Evidence for membrane-bound oligomerization of bacteriophage phi X174 lysis protein-E. J Biol Chem 1989;264(8):4552-8.
WITTE A, LUBITZ W. Biochemical characterization of φX174‐protein‐E‐mediated lysis of Escherichia coli. Eur J Biochem 1989;180(2):393-8.
Bayer M. Areas of adhesion between wall and membrane of Escherichia coli. Microbiol 1968;53(3):395-404.
Witte A, Wanner G, Lubitz W, Höltje J-V. Effect of ΦX174 protein E-mediated lysis on murein composition of Escherichia coli. FEMS Microbiol Lett 1998;164(1):149-57.
Schön P, Schrot G, Wanner G, Lubitz W, Witte A. Two-stage model for integration of the lysis protein E of ΦX174 into the cell envelope of Escherichia coli. FEMS Microbiol Rev 1995;17(1-2):207-12.
Jalava K, Hensel A, Szostak M, Resch S, Lubitz W. Bacterial ghosts as vaccine candidates for veterinary applications. J Control Release 2002;85(1):17-25.
Lubitz W, Witte A, Eko F, Kamal M, Jechlinger W, Brand E, et al. Extended recombinant bacterial ghost system. J Biotechnol 1999;73(2):261-73.
Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs)—advanced antigen and drug delivery system. Vaccine 2010;28(36):5760-7.
Lubitz W. Bacterial ghosts as carrier and targeting systems. Expert Opin Biol Ther 2001;1(5):765-71.
Kudela P, Paukner S, Mayr UB, Cholujova D, Schwarczova Z, Sedlak J, et al. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J Immun 2005;28(2):136-43.
Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. Activation of lysosomal function during dendritic cell maturation. Science 2003;299(5611):1400-3.
Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23:975-1028.
Eko FO, Barisani-Asenbauer T. Development of a Chlamydia trachomatis bacterial ghost vaccine to fight human blindness. Hum Vaccines 2008;4(3):176-83.
- Abstract Viewed: 1005 times
- PDF Downloaded: 1702 times