• Logo
  • SBMUJournals

Antimicrobial Activity and Physicochemical Characterization of Oregano, Thyme and Clove Leave Essential Oils, Nonencapsulated and Nanoencapsulated, Using Emulsification

Nancy Ruiz-Gonzalez, Aurelio Lopez-Malo, Enrique Palou, Nelly Ramirez-Corona, Maria Teresa Jimenez-Munguia
28

Views

PDF

Abstract

Background and objective: Functional properties of essential oils are attributed to their components, many of which exhibit antimicrobial activity against pathogenic and spoilage microorganisms in a wide variety of foods. However, essential oils are unstable compounds; therefore, they can be encapsulated for a better protection and increase of functionality. In this work, antimicrobial activities of oregano, thyme and clove leave essential oils (non-encapsulated and nanoencapsulated) were assessed against Escherichia coli ATCC 29922, Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 25923 using emulsification.

Material and methods: The essential oils were characterized based on their physicochemical properties. Nanoemulsions were prepared, using 5% (w w-1) of essential oils, and then characterized based on their physical properties, stability and encapsulation efficiency. The microdilution antimicrobial assay was carried out to assess minimum inhibitory concentration and minimum bactericidal concentration of the essential oils and their nanoemulsions. Data from physical properties of the essential oils and physical properties, stability and encapsulation efficiency of the nanoemulsions were statistically analyzed.

Results and conclusion: Antimicrobial activity of the essential oils showed decreases in minimum inhibitory concentration by 27-60% for the nanoencapsulated oils, compared to nonencapsulated oils. Nanoencapsulated and nonencapsulated oregano essential oils exhibited the lowest minimum inhibitory concentration and minimum bactericidal concentration values. Based on the results, nanoencapslulated essential oils may further be used in various foods to avoid microbial contaminations.

Conflict of interest: The authors declare no conflict of interest.

Keywords

▪ Antimicrobials ▪ Essential oils ▪ Nanoemulsions ▪ Nanoencapsulation ▪ Pathogens

References

Ait-Ouazzou A, Lorán S, Bakkali M, Laglaoui A, Rota C, Herrera A, et al. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. ‎J. Sci. Food Agric. 2011; 91(14):2643–2651.

doi:10.1002/jsfa.4505

Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, et al. Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2015; 15(1):143–182.

doi:10.1111/1541-4337.12179

Delaquis P. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. ‎Int. J. Food Microbiol. 2002; 74(1-2):101–109.

doi: 10.1016/s0168-1605(01)00734-6

Hernández-Hernández E, Regalado-González C, Vázquez-Landaverde P, Guerrero-Legarreta I, García-Almendárez BE. Microencapsulation, chemical characterization, and antimicrobial activity of Mexican (Lippia graveolensH.B.K.) and European (Origanum vulgareL.) oregano essential oils. Sci. World J. 2014; 14:1–12.

doi: 10.1155/2014/641814

Misharina TA. Changes in the composition of the essential oil of marjoram during storage. Appl. Biochem. Microbiol. 2003; 39(3):311–316.

doi: 10.1023/a:1023592030874

Adamiec J. Moisture sorption characteristics of peppermint oil microencapsulated by spray drying. Dry. Technol. 2009; 27(12):1363–1369.

doi: 10.1080/07373930903383695

Zuidam NJ, Nedovic V. Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, 2010: 1-400.

Nayak BK, Nanda A, Bhat MA. Integrating Biologically-Inspired Nanotechnology into Medical Practice. IGI Global, 2017: 1-394.

Ayala-Zavala JF, Soto-Valdez H, González-León A, Álvarez-Parrilla E, Martín-Belloso O, González-Aguilar GA. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2007; 60(3-4):359–368.

doi: 10.1007/s10847-007-9385-1

Dima C, Cotarlet M, Tiberius B, Bahrim G, Alexe P, Dima S. Encapsulation of coriander essential oil in β-cyclodextrin: antioxidant and antimicrobial properties evaluation. Rom. Biotechnol. Lett. 2014; 19(2): 9128-9140.

A.O.A.C. Official Method 920.141 - Refractive Index of lemon and orange oils. In:

William Horwitz. Official Methods of Analysis A.O.A.C international, 17th Edition. Gaithersburg, Md., Association of Official Analytical Chemists, 2000: 1-25.

A.O.A.C. Official Method 920.134 – Specific Gravity of lemon, orange and lime extracts – Pycnometer Method. In: William Horwitz. Official Methods of Analysis A.O.A.C international, 17th Edition. Gaithersburg, Md., Association of Official Analytical Chemists, 2000: 1-25.

A.O.A.C. Official Method 981.12 – pH of acidified foods. In:

William Horwitz. Official Methods of Analysis A.O.A.C international, 17th Edition. Gaithersburg, Md., Association of Official Analytical Chemists, 2000: 1-14.

Xiao Z, Li W, Zhu G, Zhou R, Niu Y. Study of production and the stability of styrallyl acetate nanocapsules using complex coacervation. Flavour Fragr. J. 2016; 31(4):283–289.

doi: 10.1002/ffj.3306

Haba E, Bouhdid S, Torrego-Solana N, Marqués AM, Espuny MJ, García-Celma MJ, et al. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int. J. Pharm. 2014; 476(1-2):134–141.

doi: 10.1016/j.ijpharm.2014.09.039

Boskovic M, Zdravkovic N, Ivanovic J, Janjic J, Djordjevic J, Starcevic M, et al. Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci. 2015; 5:18–21.

doi: 10.1016/j.profoo.2015.09.005

Olmedo R, Nepote V, Grosso NR. Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation. Food Chem. 2014; 156:212–219.

doi: 10.1016/j.foodchem.2014.01.087

Navarrete P, Toledo I, Mardones P, Opazo R, Espejo R, Romero J. Effect of Thymus vulgaris essential oil on intestinal bacterial microbiota of rainbow trout, Oncorhynchus mykiss (Walbaum) and bacterial isolates. Aquacult. Res. 2010;41:667-678

doi: 10.1111/j.1365-2109.2010.02590.x

Bhuiyan MNI, Begum J, Nandi NC, Akter F. Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatum (L.) Alston). Afr. J. Plant Sci.

; 4(11): 451-454.

Baizabal RH. Evaluación de la capacidad antioxidante y antimicrobiana del aceite esencial y del polvo de romero (Rosmarinus officinalis L.) en queso fresco de vaca. Tesis de licenciatura. Universidad de las Américas Puebla, México, “Unpublished results”.

Alabado-Plaus E, Saez-Flores G, Grabiel-Ataucusi S. Composición química y actividad antibacteriana del aceite esencial del Origanum vulgare (orégano). Rev. Medica Hered. 2001; 12(1):16-19.

doi: 10.20453/rmh.v12i1.660

Haddouchi F, Chaouche T, Lazouni HA, Benmansour A. Physicochemical study essential oils of Thymus fontanesii according to its conservation. Der. Pharma. Chemica. 2011; 3(2):404-410.

Nowak K, Ogonowski J, Jaworska M, Grzesik K. Clove oil - properties and applications. Chemik, 2012; 66(2):145-152.

Siddiqui N, Ahmad A. A study on viscosity, surface tension and volume flow rate of some edible and medicinal oils. Int. J. Sci. Environ. Technol. 2013; 2(6):1318-1326.

Busatta C, Mossi AJ, Rodrigues MRA, Cansian RL, De Oliveira JV. Evaluation of Origanum vulgare essential oil as antimicrobial agent in sausage. Braz. J. Microbiol. 2007; 38(4):610–616.

doi:10.1590/s1517-83822007000400006

Shabnum S, Wagay MG. Essential oil composition of Thymus Vulgaris L. and their uses. J. Res. Dev. 2011; 11: 1-12.

Campelo PH, Junqueira LA, Resende JV, Zacarias RD, Fernandes RV de B, Botrel DA, et al. Stability of lime essential oil emulsion prepared using biopolymers and ultrasound treatment. Int. J. Food Prop. 2017; 20(1):5564–5579.

doi: 10.1080/10942912.2017.1303707

McClements DJ. Food Emulsion: Principle, Practices, and Techniques, 2nd ed. CRC Press, Boca Raton, FL, USA, 2005: 1-609.

Salager JL. Emulsion properties and related know-how to attain them. In: Nielloud F, Marti-Mestres G. Pharmaceutical Emulsions and Suspensions. New York, Marcel Dekker Inc., 2000: 72–125.

McClements DJ. Food Emulsions: Principles, Practice and Techniques. CRC Press, Florida, 1999:1-374.

McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity.Crit. Rev. Food Sci. Nutr. 2011; 51(4):285–330.

doi: 10.1080/10408398.2011.559558

Barbosa-Cánovas GV. Food Engineering, Vol. II. EOLSS, USA, 2009:1-334

Jafari SM, Assadpoor E, He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray drying. Dry. Technol. 2008; 26(7):816–835.

doi: 10.1080/07373930802135972

López-Malo A, Palou E, León-Cruz R, Alzamora SM. Mixtures of natural and synthetic antifungal agents. Adv. Food Mycol. 2006; 261–286.

doi: 10.1007/0-387-28391-9_18

Fisher K, Phillips C. Potential antimicrobial uses of essential oils in food: is citrus the answer?. Trends Food Sci. Technol. 2008; 19(3):156–164.

doi: 10.1016/j.tifs.2007.11.006

Rodriguez-Garcia I, Silva-Espinoza BA, Ortega-Ramirez LA, Leyva JM, Siddiqui MW, Cruz-Valenzuela MR, et al. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit. Rev. Food Sci. Nutr. 2015; 56(10):1717–1727.

doi: 10.1080/10408398.2013.800832

Ouedrhiri W, Balouiri M, Bouhdid S, Moja S, Chahdi FO, Taleb M, et al. Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: optimization of their antibacterial effect. Ind. Crops Prod. 2016; 89:1–9.

doi: 10.1016/j.indcrop.2016.04.049

Okoh OO, Sadimenko AP, Afolayan AJ. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010; 120(1):308–12.

doi: 10.1016/j.foodchem.2009.09.084

Weiss J, Gaysinsky S, Davidson M., McClements J. Nanostructured encapsulation systems: Food antimicrobials. In: Barbosa-Cánovas G, Mortimer A, Lineback D, Spiess W, Buckle K, Colonna P. Global Issues in Food Science and Technology. New York, NY, USA, Academic Press, 2009:425–479.

doi: 10.1016/b978-0-12-374124-0.00024-7




DOI: https://doi.org/10.22037/afb.v6i4.25541

Refbacks

  • There are currently no refbacks.