جذب 2 کلروفنل توسط کربن فعال حاصل از پوست پرتقال و پوست موز: مطالعات تعادلي و سينتيکي
ارتقای ایمنی و پیشگیری از مصدومیت ها,
دوره 4 شماره 2 (2016),
16 دی 2017
,
صفحه 128 - 117
https://doi.org/10.22037/meipm.v4i2.14143
چکیده
سابقه و هدف:ترکیبات فنلی در فاضلاب صنایع مختلف موجود بوده و جزء آلایندههای دارای تقدم میباشند، بنابراین قبل از تخلیه به محیطزیست باید مورد تصفیه قرار گیرند. هدف مطالعه حاضر، بررسی جذب 2-کلروفنل توسط کربن فعال حاصل از پوست پرتقال و پوست موز بود.
روش بررسی: این تحقیق بهصورت آزمایشگاهی و بهصورت ناپیوسته انجام گرفت. پوست پرتقال و موز در دمای 105 درجه سانتیگراد خشک و سپس کربونیزه و در اندازه 30 مش دانهبندی شد. تأثیر پارامترهای مختلف مثل زمان تماس (10تا 120 دقیقه)، (11-3) PH غلظت اولیه 2-کلروفنل (10 تا 200 میلیگرم در لیتر) و دوز بیومس (0/2 تا 2 گرم در لیتر) بر عملکرد جاذب بررسی شد. نمونهها با دو بار تکرار مورد آزمون قرار گرفتند و مدلهای مختلف ایزوترم و سرعت واکنش جذب از طریق مقایسه ضریب رگرسیون (R2) تحلیل شد.
یافتهها: نتایج نشان داد با افزایش زمان تماس و دوز جاذب، میزان حذف 2 کلروفنل با هر دو جاذب افزایش مییابد، اما ظرفیت جذب جاذب (qe) کاهش مییابد. با کاهش غلظت اولیه 2 کلروفنل، میزان حذف افزایش یافت و pH بهینه برای جذب معادل 5 تعیین گردید. دادههای حاصل از ایزوترم جذب لانگمویر برای هر دو جاذب بهتر از سایر ایزوترمها پیروی میکنند. از طرف دیگر بررسی سینتیک جذب بیانگر تطابق بهتر دادهها با معادله درجهدوم کاذب بود.
نتیجهگیری: بر اساس نتایج حاصل از مطالعه حاضر مشخص شد که کربن فعال حاصل از پوست پرتقال و موز بهعنوان یک جاذب ارزانقیمت از پتانسیل جذب بالایی در حذف آلاینده 2-کلروفنل از نمونههای آب و فاضلاب برخوردار میباشد.
How to cite this article:
Zazouli MA, Balarak D. Adsorption of 2-Chlorophenol on Activated Carbon Prepared from Orange and Banana Husk: Equilibrium and Kinetic Studies. J Saf Promot Inj Prev. 2016; 4(2):117-28.
- 2-کلروفنل، جاذب طبیعی، پوست پرتقال، پوست موز، جذب سطحی
ارجاع به مقاله
مراجع
Ansari S, Jafari MJ, Sedghi R, Azari MR, Zendehdel R. Toluene vapors adsorption in the fixed and fluidized bed by Nano-Zeolite. Safety Promotion and Injury Prevention. 2015;3(3):155-60.
Diyanati RA, Yazdani J, Belarak D. Effect of sorbitol on phenol removal rate by lemna minor. Journal of Mazandaran University of Medical Sciences. 2013;23:55-62.
Girelli AM, Mattei E, Messina A. Phenols removal by immobilized tyrosinase reactor in on-line hig performance liquid chromatography. Anal Chim Acta. 2006; 580 (2): 271-7.
Bazrafshan E, Mostafapour KF, Mahvi AH. Phenol removal from aqueous solutions using pistachio-nut shell ash as a low cost adsorbent. Fresenius Environmental Bulletin. 2012;21(10); 2962-8.
Tepe O, Dursun AY. Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor. Journal of hazardous materials. 2008; 151(1):9-16.
Bayramoglu G, Arica MY. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal of hazardous materials. 2008;156(1-3): 148-55.
Zazouli MA, Balarak D, Mahdavi Y. Application of azolla filiculoides biomass for 2-Chlorophenol and 4-Chrorophenol Removal from aqueous solutions. Iranian journal of health sciences. 2013;1(2):36-43.
Kumar NS, Subbaiah MV, Reddy AS, Krishnaiah A. Biosorption of phenolic compounds from aqueous solutions onto chitosan–abrus precatorius blended beads. Journal of Chemical Technology & Biotechnology. 2009;84(7):972-81.
Rubín E, Rodríguez P, Herrero R, Sastre de Vicente ME. Biosorption of phenolic compounds by the brown alga Sargassum muticum. Journal of ChemicalTechnology & Biotechnology. 2006;81(7):1093-99.
Gholizadeh A, Kermani M, Gholami M, Farzadkia M. Comparative Investigation of 2-Chlorophenol and 4-ChrorophenolRemoval Using Granulated Activated Carbon and Rice Husk Ash. Tooloe Behdasht. 2012;11(3):66-78.
Wu J, Yu HQ. Biosorption of 2, 4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions. Bioresource technology. 2007;98(2):253-9.
Akar T, Ozcan AS, Tunali S, Ozcan A. Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis: Estimation of equilibrium, thermodynamic and kinetic parameters. Bioresource technology. 2008; 99(8):3057-65.
Banat FA, Al-Bashir B, Al-Asheh S. Adsorption of phenol by bentonite. Environmental pollution. 2000;107(3):391-8.
Nadavala SK, SwayampakulaK, Boddu VM. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan-calcium alginate blended beads. hazardous materials. 2009;162(1):482-9.
Tor A, Cengeloglu Y, Aydin ME, Ersoz M. Removal of phenol from aqueous phase by using neutralized red mud. Journal of colloid and interface science. 2006;300(2):498-503.
Diyanati RA, Yousefi Z, Cherati JY, Balarak D. Comparison of phenol adsorption rate by modified Canola and Azolla: An Adsorption Isotherm and Kinetics Study.Journal of Health & Development. 2014; 3(3);17-25.
Mukherjee S, Kumar S, Misra AK, Fan M. Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chemical Engineering Journal. 2007;129(1):133-42.
Balarak D, Jaafari J, Hassani G, Mahdavi Y, Tyagi I, Agarwal S, Gupta VK. The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: Isotherm, kinetic and thermodynamic studies. Colloids and Interface Science Communications. 2015;7:16-9.
Qadeer R, Rehan AH. A study of the adsorption of phenol by activated carbon from aqueous solutions. Turkish journal of chemistry. 2002;26(3):357-62.
Gholami H, Gholami M, Gholizadeh A, Rastegar A. Use of Orange Peel Ash for removal of Direct Black 22 Dye from aqueous environments. Journal of North Khorasan University of Medical Sciences. 2012;4(1):45-55.
Liu C, Ngo HH, Guo W, Tung K-L. Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water. Bioresource Technology 2012;119:349-54.
Hameed BH, Hakimi H. Utilization of durian (Durio zibethinus Murray) peel as low cost sorbent for the removal of acid dye from aqueous solutions. Biochemical Engineering Journal. 2008;39(2):338-43.
Salman JM, Njoku VO, Hameed BH. Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chemical Engineering Journal. 2011;174(1):41-8.
Amela K, Hassen MA, Kerroum D. Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia. 2012;19:286-95.
Zazouli MA, Balarak D, Mahdavi Y, Barafrashtehpour M, Ebrahimi M. Adsorption of Bisphenol from Industrial Wastewater by Modified Red Mud. Journal of Health & Development. 2013;2(1):1-11.
Malakootian M, Balarak D, Mahdavi Y, Sadeghi SH, Amirmahani N. Removal of antibiotics from wastewater by azolla filiculoides: Kinetic and equilibrium studies. IJAPBS. 2015;4(7):105-13.
Mousavi SA, Khashij M, Shahbazi P. Adsorption Isotherm Study and Factor Affected on Methylene Blue Decolorization using Activated Carbon Powder Prepared Grapevine Leaf. Safety Promotion and Injury Prevention. 2016;3(4):249-56.
Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination. 2010;261(1):52-60.
Yao Y, Bing H, Feifei X, Xiaofeng C. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chemical Engineering Journal. 2011;170(1):82-9.
Jafari-Mansoorian H, Farzadkia M, Ansari M, Ahmadi E, Majidi G, Amraie A, Joghataie A. Evaluating the Activated Carbon Prepared from walnut in Removal of Arsenic from Aqueous Solution. Safety Promotion and Injury Prevention. 2016;3(4):287-94.
Hameed BH, Rahman AA. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials. 2008;160(2):576-81.
Shamohammadi S, Isfahani A. Removal of Manganese from Aqueous Solution by Natural Zeolite in the Presence of Iron, Chrome and Aluminum Ions. Water and Wastewater. 2012(1):66-76.
Bayramoglu G, Gursel I, Tunali Y, Arica MY. Biosorption of phenoland 2-chlorophenol by Funalia trogii pellets. Bioresource Technology. 2009;100(10):2685-91.
Pajooheshfar SP. Survey Removal of phenol from contaminated water using activated carbon and carbon skin almonds and walnuts. Environmental Science and Technology. 2009;10(4):219-33.
Kermani M, Gholami M, Gholizade A, Farzadkia M, Esrafili A. Effectiveness of Rice Husk Ash in Removal of Phenolic Compounds from Aqueous Solutions, Equilibrium and Kinetics Studies. Iranian Journal Health & Environmental. 2012; 5(2); 107-20.
Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials. 2009;172(1); 353-62.
Yousef RI, El-Eswed B, Ala’a H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal. 2011;171(3):1143-9.
Massoudinejad MR, Eslami A, Khashij M. Removal of Mn2+ from aqueous solution using Clinoptilolite coated with manganese dioxide. Journal of Safety Promotion and Injury Prevention.2015; 2(4);264-73.
Hamzeh Y, Izadyar S, Azadeh E, Abyaz A, Asadollahi Y. Application of canola salks wasteas adsorbent of acid orange 7 from Aqueous Solution. Iranian Journal of Health and Environment. 2011;4(1):48-56.
Baker HM, Ghanem R. Evaluation of treated natural zeolite for the removal of o-chlorophenol from aqueous solution. Desalination. 2009 Dec 25;249(3):1265-72.
Wang SL, Tzou YM, Lu YH, Sheng G. Removal of 3-chlorophenol from water using rice-straw-based carbon. Journal of hazardous materials. 2007;147(1):313-8.
Subramanyam B, Das A. Study of the adsorption of phenol by two soils based on kinetic and isotherm modeling analyses. Desalination. 2009;249(3):914-21.
- چکیده مشاهده شده: 1321 بار
- PDF دانلود شده: 2484 بار