Applications of Nanotechnology in Dentistry: A Review
Journal of Dental School,
Vol. 32 No. 4 (2014),
25 October 2014
,
Page 228-239
https://doi.org/10.22037/jds.v32i4.24781
Abstract
Objective: Maintaining the health of oral tissues is a major goal in dentistry. However, limitations in dental materials, instruments, procedures and medications prevent achievement of this goal. Advances in nanotechnology have paved the way to approach this goal. This study reviews the advances on nanotechnology in dentistry.
Review of Literatures: In this review study, Google Scholar, PubMed, Science Direct, Medline and Cochrane databases were searched for relevant English and Farsi papers from 1981 to 2013. The searched key words were: “nano-characterization”, “antimicrobial agent”, “nano-dentistry”, “nanotechnology”, “nanoparticles”, and “nano-medicine”.
Conclusion: Studies indicated extensive applications of nanotechnology in various fields of dentistry such as prevention, diagnosis and treatment. Use of nanoparticles as antimicrobial agents in conjunction with other oral hygiene tools such as toothpastes may prevent many oral and dental conditions. Also, application of nanostructures enables faster and easier detection of oral cancers and assessment of the saliva for presence of viruses, proteins or specific markers. Last but not least, nano-capsules, nano-coatings and nano-antibiotics enable more efficient treatments.
- Antimicrobial agent
- Nano-characterization
- Nano-dentistry
- Nano-medicine
- Nanoparticles
- Nanotechnology
How to Cite
References
Freitas RA Jr. Nanodentistry. J Am Dent Assoc 2000; 131: 1559-1565.
Myshko D. Applications of nanotechnology, It’s a Small World. Pharma Voice 2004; 34-39.
Duke ES. Has dentistry moved into the nanotechnology era? Compend Contin Educ Dent 2003; 24: 380-382.
Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005; 13: 34-40.
Del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 2007; 82: 204-209.
Kim JS, Kuku E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007; 3: 95-101.
Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18: 6679-6686.
Srivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007; 18: 1-9.
Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 2003; 697: 4278- 4281.
Spacciapoli P, Buxton D, Rothstein D, Friden P. Antimicrobial activity of silver nitrate against periodontal pathogens. J Periodontal Res 2001; 36:108-113.
FriesR, Greßler S, Simkó M, Gazsó A, Fiedeler U, Nentwich M. Nanosilver. NanoTrust-Dossiers 2010; 10: 1998-7293.
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16: 2346-2353.
Sadeghi B, Garmaroudi FS, Hashemi M, Nezhad HR, Nasrollahi A, Ardalan S, et al. Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Advanced Powder Technology 2012; 23: 22-26.
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73: 1712-1720.
Gong P, Li H, He X, Wang K, Hu J, Tan W, et al. Preparation and antibacterial activity of Fe3O4
@Ag nanoparticles. Nanotechnology 2007; 18: 604-611.
Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 2005; 295: 235-245.
Ong SY, Wu J, Moochhala SM, Tan MH, Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008; 29: 4323–4332.
Jayakumar R, New N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 2007; 40: 175-181.
Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan Nanofibers in biomedical applications. Biotechnol Adv 2010; 28: 142-150.
Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 2008; 34: 1515-1520.
Hyung H, Fortner JD, Hughes JB, Kim JH. Natural organic matter stabilizes. Carbon nanotubes in the aqueous phase. Environ Sci Technol 2007; 41: 179-184.
Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 2008, 42: 4591-602.
Kang S, Pinault M, Pfefferle LD, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007; 23: 8670-8673.
Brady-Estévez AS, Nguyen TH, Gutierrez L, Elimelech M. Impact of solution. Chemistry on viral removal by a single-walled carbon nanotube filter. Water Res 2010; 44: 3773-3780.
Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci U S A 2010; 107: 22038-22043.
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 24-55: 329-347
Sharma VK, Yngard RA, Liu Y. Silver nanoparticles, green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2008; 145: 83-96.
Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 2008; 24: 4140-4144.
Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids Surf. B Biointerfaces 2010; 79: 5-18.
Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009; 33:587-590.
Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 1999; 65: 4094-4098.
Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010; 40: 328-346.
Chamundeeswari M, Sobhana SS, Jacob JP, Kumar MG, Devi MP, Sastry TP, et al. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity, biotechnol. Appl Biochem 2010; 55: 29-35.
Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles, Carbohydr Res 2004; 339: 2693-2700.
Kang S, Pinault M, Pfefferle LD, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007; 23: 8670-8673.
Tischer M, Pradel G, Ohlsen K, Holzgrabe U. Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions? Chem Med Chem 2012; 7: 22-31.
Sundelacruz S, Kaplan DL. Stem cell-and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 2009; 20: 646-655.
Dutta RC, Dutta AK. Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 2009; 27: 334-339.
Huang Z, Sargeant TD, Hulvat JF, Mata A, Bringas P Jr, Koh CY, et al. Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. Bone Miner Res 2008; 23: 1995-2006.
Galler KM, Cavender A, Yuwono V, Dong H, Shi S, Schmalz G, et al: Self-assembling peptide amphiphilenanofibers as a scaffold for dental stem cells 2008; 14: 2051-2058.
Forestier F, Gerrier P, Chaumard C, Quero UM, Couvreur P, Labarre C. Effect of nanoparticle- bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages. J Antimicrob Chemotherapy 1992; 30: 173-179.
Turos E, Reddy GS, Greenhalgh K, Ramaraju P, Abeylath SC, Jang S, et al: Penicillin-bound polyacrylate nanoparticles: restoring the activity of beta-lactam antibiotics against. MRSA Bioorg. Med Chem Lett 2007; 17: 3468–3472.
Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, et al. A three-layered nano- carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 2005; 26: 7564-7571.
Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 2010; 267: 71-88.
Feng K, Sun H, Bradley MA, Dupler EJ, Giannobile WV, Ma PX. Novel antibacterial nano fibrous PLLA scaffolds. J Control Release 2010; 146: 363-369.
Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod 2010; 36: 322-328.
Soukos NS, Chen PSY, Morris JT, Ruggiero K, Abernethy AD, Som S. Photodynamic therapy for endodontic disinfection. J Endod 2006: 32; 979-984.
Kumara S, Abhilasha S, Manzoora K, Naira SV, Tamurab H, Jayakumar R. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydrate Polymers 2010; 80: 761-767.
Allaker PR. The use of nanoparticle to control oral biofilm formation. J Dent Res 2010; 89: 1175-1186.
Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 2009; 30: 2782-2789.
Tang W, Xu H, Kopelman R, Philbert MA. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol 2005; 81: 242-9.
Tada DB, Vono LL, Duarte EL, Itri R, Kiyohara PK, Baptista MS, et al. Methylene blue- containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 2007; 23: 8194-8199.
Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 2006; 90: 619-627.
MacRobert AJ, Bown SG, Phillips D. What are the ideal photo properties for a sensitizer? Ciba Found Symp 1989; 146: 4-12.
Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nano rods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 2012; 64: 190-199.
Azizy HM, Mansour MM, Kazmierczak SC. From diagnostics to therapy: Prospects of quantum dots. Clin Biochem 2007; 40: 917-927.
Shirmohammadi A, Chitsazi MT, Lafzi A. A clinical comparison of autogenous bone graft with and without autogenous periodontal ligament graft in the treatment of periodontal intrabony defects. Clin Oral Investig 2009; 13: 279-286.
Gottlow J, Nyman S, Lindhe J, Karring T, Wennström J. New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 1986; 13: 604-616.
Lynch SE, Williams RC, Polson AM, Howell TH, Reddy MS, Zappa UE, et al. A combination of platelet-derived and insulin-like growth factors enhances periodontal regeneration. J Clin Periodontol 1989; 16: 545-548.
Tran PA, Zhang L, Webster TJ. Carbon nano fibers and carbon nanotubes in regenerative medicine. J Adv Drug Deliv Rev 2009; 61: 1097-1114.
Chris Arts JJ, Verdonschot N, Schreurs BW, Buma P. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials 2006; 27: 1110–1118.
Min JH, Kwon HK, Kim BI. The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion: in vitro study using bovine enamel. J Dent 2011; 39: 629-635.
Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2004; 2: 844–854.
Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, et al. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 2008; 29: 161-171.
Schouten C, Meijer GJ, van den Beucken JJ, Leeuwenburgh SC, de Jonge LT, Wolke JG et al. In vivo bone response and mechanical evaluation of electrosprayed CaP nanoparticle coatings using the iliac crest of goats as an implantation model. Acta Biomater 2010; 6: 2227-2236.
Svanborg LM, Hoffman M, Andersson M, Currie F, Kjellin P, Wennerberg A. The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants. Int J Oral Maxillofac Surg 2011; 40: 308-315.
Almaguer-Flores A, Ximenez-Fyvie LA, Rodil SE. Oral bacterial adhesion on amorphous carbon and titanium films: effect of surface roughness and culture media. J Biomed Mater Res B Appl Biomater 2010; 92: 196-204.
Shantiae Y, Maziar F, Dianat O, Mahjour F. Comparing microleakage in root canals obturated with nanosilver coated gutta-percha to standard gutta-percha by two different methods. Iran Endod J 2011; 6: 140-145.
Niu LN, Fang M, Jiao K, Tang LH, Xiao YH, Shen LJ, et al. Tetrapod-like zinc oxide whisker enhancement of resin composite. J Dent Res 2010; 89: 746-750.
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 2009; 34: 103-110.
Yudovin-Farber I, Beyth N, Nyska A, Weiss EI, Golenser J, Domb AJ. Surface characterization and biocompatibility of restorative resin containing nanoparticles. Biomacromolecules 2008; 9: 3044-3050.
Fang M, Chai F, Chen JH, Neut C, Jia M, Liu Y, et al. Antibacterial functionalization of an experimental self-etching primer by inorganic agents: microbiological and biocompatibility evaluations. Biomol Eng 2007; 24: 483-488.
Farbod M, Rezaian S. An investigation of super-hydrophilic properties of TiO2/SnO2 Nano composite thin films. Thin Solid Films 2010; 520: 1954–1958.
Chen MH, Chen CR, Hsu SH, Sun SP, Su WF. Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater 2006; 22: 138-145.
Figueiredo de Magalhães M, Neto Ferreira RA, Grossi PA, de Andrade RM. Measurement of thermophysical properties of human dentin: effect of open porosity. J Dent 2008; 36: 588-594.
Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, Kim BI. Remineralization potential of new toothpaste containing Nano-Hydroxyapatite. Key Engineering Materials 2006; 309-311: 537-540.
Kim BI, Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD. Tooth whitening effect of toothpastes containing Nano-Hydroxyapatite. Key Engineering Materials 2006; 309-311: 541- 544.
Giertsen E. Effects of mouthrinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004; 38: 430-435.
Gatti A. Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 2004; 25: 385-392.
Kanaparthy R, Kanaparthy A. The changing face of dentistry: nanotechnology. Int J Nanomedicine 2011; 6: 2799-2804.
Khosla R. Nanotechnology in dentistry. Famdent Practical Dentistry Handbook 2009; 9: 69-84.
Weiss R: Nanomedicine’s promise is anything but tiny. Washington Post Staff Writer 2005; Page A08.
Kairemo K, Erba P, Bergstrom K, Pauwels EJ. Nanoparticles in cancer. Curr Radio Pharm 2008; 1: 30-36.
Sharma S, Cross SE, Hsueh C, Wali RP, Stieg AZ, Gimzewski JK. Nano-characterization in dentistry. Int J Mol Sci 2010; 11: 2523-2545.
Shetty NJ, Swati P, David K. Nanorobots: Future in dentistry. Saudi Dent J 2013; 25: 49-52.
- Abstract Viewed: 297 times
- PDF Downloaded: 109 times