Applied Food Biotechnology
  • Register
  • Login
  • English
    • فارسی
    • العربية
    • 简体中文
  • Home
  • About
    • Author guidelines
    • Journal Cover letter
    • Copyright form
    • Conflict of interest
    • Reviewer Guideline
    • Privacy Statement
    • Pre-Print Policy
    • Archiving Policy
    • Plagiarism policy
    • Contact
  • About the Journal
    • Editorial Team
  • Template of original manuscript
  • Current
  • Archives
Advanced Search
  1. Home
  2. Archives
  3. Vol. 1 No. 1 (2014): Autumn
  4. Original Article

ISSN: 2345-5357

Autumn
Vol. 1 No. 1 (2014)

Statistical Optimization of Xanthan Gum Production and Influence of Airflow Rates in Lab-scale Fermentor

  • S. Moshaf
  • Z. Hamidi-Esfahani
  • M.H. Azizi
  • - Applied Food Biotechnology

Applied Food Biotechnology, Vol. 1 No. 1 (2014), , Page 17-24
https://doi.org/10.22037/afb.v1i1.7132 Published 25 September 2014

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

The present study was undertaken to investigate and optimize the possibility of xanthan gum production by Xanthomonas campestris PTCC1473 in 500ml shake flasks on the second grade date palm. Using an experimental response surface methodology (RSM) coupled with a central composite design (CCD), three major independent variables (nitrogen source, phosphor source and agitation rate) were evaluated for their individual and interactive effects on biomass and xanthan gum production in submerged fermentation. The optimum conditions selected for gum production were 3.15 g.l-1 for nitrogen source, 5.03 g.l-1 for phosphor source, and 394.8 rpm for agitation rate. Reconfirmation test was conducted, and the experimental value obtained for xanthan production under optimum conditions was about 6.72±0.26 g.l-1, which was close to 6.51 g.l-1 as predicted by the model. A higher yield of biomass production was obtained at 13.74 g.l-1 for nitrogen source, 4.66 g.l-1 for phosphor source, and 387.42 rpm for agitation rate. In the next stage, scale-up from the shake flasks to the 1-L batch fermentors was carried. By using the optimum conditions for xanthan gum, the biomass and xanthan gum concentrations after 72h in three levels of air flow rate (0.5, 1 and 1.5 vvm) were obtained as 3.98, 5.31 and 6.04 g.l-1,and 11.32, 15.16 and 16.84 g.l-1, respectively. Overall, the second grade date palm seemed to exhibit promising properties that can open new pathways for the production of efficient and cost-effective xanthan gum.
Keywords:
  • Xanthan gum
  • Second grade date palm
  • RSM
  • Xanthomonas campestris
  • Aeration rate
  • Lab sclae fermentor
  • PDF

How to Cite

Moshaf, S., Hamidi-Esfahani, Z., Azizi, M., & Applied Food Biotechnology, -. (2014). Statistical Optimization of Xanthan Gum Production and Influence of Airflow Rates in Lab-scale Fermentor. Applied Food Biotechnology, 1(1), 17-24. https://doi.org/10.22037/afb.v1i1.7132
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

FAO STAT. Crop Production. Statistics Division, Food and Agriculture Organization of the United Nations. 2008.

Besbes S, Hentati BC, Deroanne C, Lognay G, Drira NE. Voies de valorisation des sous produits de dattes: Valorisation du noyau. Microbiol Hyg Aliment. 2006; 18: 3-11.

Besbes S, Cheikhrouhou S, Blecker C, Deroanne C, Lognay G, Drira NE. Voies de valorisation des sous produits de dattes: Valorisation de la pulpe. Microbiol Hyg Aliment. 2006; 18: 3-7.

Besbes Blecker S, Ghorbel R, Salah RB, Masmoudi M, Jedidi F, Attia H, et al. Date fiber concentrate: Chemical compositions,

functional properties and effect on quality characteristics of beef burgers. J Food Drug Anal. 2010; 18: 8-14.

Bacelo KL, Hartwig DD, Seixas FK, Schuch R, Moreira ADS, Amaral M, et al. Xanthan gum as an adjuvant in a subunit vaccine preparation against Leptospirosis. Bio Med Res Int. 2014; 2014: 1-14.

Rosalam S, England R. Review of xanthan gum production from unmodified starches by Xanthomonas camprestris sp. Enzyme Microb Technol. 2006; 39: 197-207.

Shehni SA, Soudi MR, Hosseinkhani S, Behzadipour N. Improvement of xanthan gum production in batch culture using stepwise acetic acid stress. Afr J Biotechnol. 2011; 10: 19425-19428.

Shu CH, Yang ST. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris. Biotechnol Bioeng. 1990; 35: 454-468.

Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis D, Skaracis G. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 2003; 39: 249-256.

Box GEP, Draper NR. Empirical model-building and response surfaces. New York, NY: John Wiley and Sons Inc. 1987.

Meyers RH, Montgomery DC. Response surface methodology, process and product optimization using designed experiments (2nd ed.). New York, NY: John Wiley & Sons. 2002.

Kamoun A, Samet B, Bouaziz J, Chaabouni M. Application of the rotatable orthogonal

center composite design to the optimization of the formulation and utilization of a useful plasticizer for cement. Anal. 1999; 27: 91-96.

Tait MI, Shutherland IW, Clarke-Sturman AJ. Effect of growth condition on production composition and Viscosity of Xanthomonas campestris. J Gen Microbiol. 1986; 132: 1483-1492.

Papagianni M, Psomas SK, Batsilas L, Paras SV, Kyriakidis DA, Liakopoulou-Kyriakides M. Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem. 2001; 37: 73-80.

Souw P, Demain A. Role of citrate in xanthan production by Xanthomonas campestris. J Ferment Technol. 1980; 58: 411-416.

Kurbanoglu EB, Kurbanoglu NI. Ram horn hydrolysate as enhancer of xanthan production in batch culture of Xanthomonas campestris EBK-4 isolate. Process Biochem. 2007; 42: 1146-1149.

Roseiro JC, Costa DC, Collaco MTA. Batch and fed-cultivation of Xanthomonas campestris in carob extracts. Food Sci. Technol. Lebensm-Wiss Technol. 1993; 25: 289-93.

Lopez MJ, Cormenzana AR. Xanthan production from olive-mill wastewaters. Int Biodeter Biodegr. 1997; 38: 263-270.

Shu CH, Yang ST. Kinetics and modeling of temperature effects on batch xanthan gum fermentation. Biotechnol Bioeng. 1991; 37: 567-574.

Garcıa-Ochoa VE, Gomez-Castro E, Santos VE. Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microb Technol. 2000; 27: 680-690.

Amanullah A, Serrano-Carreon L, Castro B, Galindo E, Nienow AW. The influence of impeller type in pilot scale xanthan fermentations. Biotechnol Bioeng. 1998; 57: 95-108.

  • Abstract Viewed: 964 times
  • PDF Downloaded: 1012 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Language
  • English
  • فارسی
  • العربية
  • 简体中文
Keywords
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Information
  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

AWT IMAGE

The journal of "Applied Food Biotechnology" is licensed under a  CC BY-NC 4.0. International License.

The template of this website is designed by Sinaweb