Applied Food Biotechnology
  • Register
  • Login
  • English
    • فارسی
    • العربية
    • 简体中文
  • Home
  • Issues
    • Current
    • Archives
    • Accepted Manuscripts
    • In Press
  • About the Journal
    • Editorial Team
    • Privacy Statement
    • Reviewing Policies and Procedures
    • Plagiarism Policy
    • Archiving Policy
    • Contact
  • For Authors
    • Author Guidelines
    • Journal Cover Letter
    • Copyright Form
    • Conflict of Interest
    • Template of Research/Original Paper
  • Template of Research/Original Paper
  • Training Course
Advanced Search
  1. Home
  2. Archives
  3. Vol. 8 No. 2 (2021): Spring
  4. Original Article

Vol. 8 No. 2 (2021)

March 2021

Process Optimization and Characterization of Enhanced Vanillin Yield Using Bacillus aryabhattai NCIM 5503

  • Veena Paul
  • Abhishek Dutt Tripathi
  • Dinesh Chandra Rai

Applied Food Biotechnology, Vol. 8 No. 2 (2021), 16 March 2021 , Page 113-119
https://doi.org/10.22037/afb.v8i2.32913 Published: 2021-03-16

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Triphaty-1399.png

Background and Objective:

Vanillin is a strong flavor used widely in food industries, but the quantity of this compound from plant sources is minimal. In the present study, vanillin was produced as bio-vanillin using biotechnological techniques and effects of the process parameters (carbon-source, nitrogen-source and pH) on ferulic acid bioconversion to vanillin for enhancing vanillin concentration were studied using Bacillus aryabhattai NCIM 5503.

Material and Methods:

Briefly, culture media included 5 g l-1 each carbon (glucose, sucrose, fructose, sorbitol, lactose, xylitol and mannitol) and nitrogen (ammonium sulphate, peptone, beef extract, yeast extract and urea) sources in distilled water supplemented with 5% (w v‑1) of ferulic acid and 1% (v v-1) of Bacillus aryabhattai NCIM 5503 as inoculum at a pH range of 4.5-12. Fermentation broth was extracted using centrifuge and further analyzed for the presence of vanillin using spectrophotometry and high-performance liquid chromatography.

Results and conclusion:

This study revealed that a maximum vanillin concentration of 0.87 g l-1 was achieved under optimum conditions (culture media with fructose and beef extract at pH 9) of 30 ºC and 150 rpm. Furthermore, vanillin in the extracted fermented broth was characterized using high-performance liquid chromatography and spectrophotometric analysis with thiobarbituric acid assay at 55 ºC for 10 min followed by 20 min of incubation at room temperature.

Keywords:
  • ▪ Bioconversion
  • ▪ Bacillus aryabhattai
  • ▪ Ferulic acid
  • ▪ Fructose
  • ▪ Submerged fermentation
  • ▪ Vanillin
  • pdf

How to Cite

Paul, V., Tripathi, A. D., & Rai, D. C. (2021). Process Optimization and Characterization of Enhanced Vanillin Yield Using Bacillus aryabhattai NCIM 5503. Applied Food Biotechnology, 8(2), 113–119. https://doi.org/10.22037/afb.v8i2.32913
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Ashengroph M, Nahvi I, Zarkesh-Esfahani H. A bioconversion process using a novel isolated strain of Pseudomonas sp. ISPC2 to produce natural vanillin from isoeugenol. Res Pharm Sci. 2009; 3(2): 41-47.

Converti A, Aliakbarian B, Dominguez JM, Vazquez GB, Perego P. Microbial production of biovanillin. Braz J Micro-biol. 2010; 41(3): 519-530.

doi:10.1590/S1517-83822010000300001

Singh A, Mukhopadhyay K, Ghosh Sachan S. Biotrans-formation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatal Biotransformation. 2019; 37(4): 291-303.

doi: 10.1080/10242422.2018.1544245

Galadima AI, Salleh MM, Hussin H, Chong CS, Yahya A, Mohamad SE, Abd-Aziz S, Yusof NNM, Naser MA, Al-Junid AFM. Biovanillin: Production concepts and prevention of side product formation. Biomass Convers Biorefinery. 2020; 10(2): 589-609.

doi:10.1007/s13399-019-00418-0

Furuya T, Kuroiwa M, Kino K. Biotechnological production of vanillin using immobilized enzymes. J Biotechnol. 2017; 243: 25-28.

doi:10.1016/j.jbiotec.2016.12.021

Zhao LQ, Sun ZH, Zheng P, Zhu LL. Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol Lett. 2005; 27(19): 1505-1509.

doi:10.1007/s10529-005-1466-x

Kaur B, Chakraborty D. Biotechnological and molecular approaches for vanillin production: A review. Appl Biochem Biotechnol. 2013; 169(4): 1353-1372.

doi:10.1007/s12010-012-0066-1

Perez-Rodriguez N, de Souza Oliveira RP, Agrasar AMT, Dominguez JM. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol. 2016; 100(4): 1677-1689.

doi: 10.1007/s00253-015-7005-3

Achterholt S, Priefert H, Steinbuchel A. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol. 2000; 54(6): 799-807.

doi: 10.1007/s002530000431

Chen P, Yan L, Wu Z, Li S, Bai Z, Yan X, Wang N, Liang N, Li H. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Sci Rep. 2016; 6: 20400.

doi: 10.1038/srep20400

Kaur B, Chakraborty D, Kumar B. Phenolic biotrans-formations during conversion of ferulic acid to vanillin by lactic acid bacteria. Biomed Res Int. 2013; 2013:2-6.

doi:10.1155/2013/590359

Gunnarsson N, Palmqvist EA. Influence of PH and Carbon Source on the Production of Vanillin from Ferulic Acid by Streptomyces setonii ATCC 39116. In: Developments in Food Science. Elsevier; 2006; 73-76.

doi: 10.1016/S0167-4501(06)80018-X

Paz A, Outeirino D, Oliveira RP de S, Dominguez JM. Fed-batch production of vanillin by Bacillus aryabhattai BA03. New Biotechnol. 2018; 40: 186-191.

doi:10.1016/j.nbt.2017.07.012

Rana R, Mathur A, Jain CK, Sharma SK, Mathur G. Microbial production of vanillin. Int J Biotechnol Bioeng Res. 2013; 4(3): 227-234.

Yan L, Chen P, Zhang S, Li S, Yan X, Wang N, Liang N, Li H. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors. Sci Rep. 2016; 6(1): 1-12.

doi: 10.1038/srep34644

Oddou JC, Stentelaire C, Lesage-Meessen L, Asther M, Ceccaldi BC. Improvement of ferulic acid bioconversion into vanillin by use of high-density cultures of Pycnoporus cinnab-arinus. Appl Microbiol Biotechnol. 1999; 53(1): 1-6.

doi: 10.1007/s002530051605

Chakraborty D, Kaur B, Obulisamy K, Selvam A, Wong JWC. Agrowaste to vanillin conversion by a natural Pediococcus acidilactici strain BD16. Environ Technol. 2017; 38(13-14): 1823-1834.

doi: 10.1080/09593330.2016.1237556

He XY, Liu JX, Cao XH, Ye YZ. The study and application of determination of vanillin by spectrophotometry with thiobarbi-turic acid. Anal Lab Beijing. 1999; 18: 56-58.

Tilay A, Bule M, Annapure U. Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinna-barinus. J Agric Food Chem. 2010; 58(7): 4401-4405.

doi: 10.1021/jf904141u

Yoon SH, Li C, Lee YM, Lee SH, Kim SH, Choi MS, Seo WT, Yang JK, Kim JY, Kim SW. Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol Bioprocess Eng. 2005;10 (4): 378-384.

doi: 10.1007/BF02931859

Hua D, Ma C, Song L, Lin S, Zhang Z, Deng Z, Xu P. Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol. 2007; 74(4): 783-790.

doi:10.1007/s00253-006-0735-5

Paz A, Carballo J, Perez MJ, Dominguez JM. Bacillus aryabhattai BA03: A novel approach to the production of natural value-added compounds. World J Microbiol Biote-chnol. 2016; 32(10): 159.

doi: 10.1007/s11274-016-2113-5

Mazhar B, Jahan N, Mazhar Ali N, Andleeb S, Ali S. Production of vanillin by a novel bacterium from waste residues of rice bran oil. Punjab Univ J Zool. 2017; 32(1): 137- 142.

Zhao LQ, Sun ZH, Zheng P, He JY. Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem. 2006; 41(7): 1673-1676.

doi: 10.1016/j.procbio.2006.02.007

Ma X, Daugulis AJ. Transformation of ferulic acid to vanillin using a fed‐batch solid-liquid two-phase partitioning bioreactor. Biotechnol Prog. 2014; 30(1): 207-214. doi:10.1002/btpr.1830

Motedayen N, Ismail MBT, Nazarpour F. Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete crysosporium ATCC 24725. Afr J Biotechnol. 2013; 12(47): 6618-6624.

doi: 10.5897/AJB2013.12416

Muheim A, Lerch K. Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol. 1999; 51(4): 456-461.

doi: 10.1007/s002530051416

  • Abstract Viewed: 756 times
  • pdf Downloaded: 679 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Developed By

Open Journal Systems

Language

  • English
  • فارسی
  • العربية
  • 简体中文

Information

  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

AWT IMAGE

The journal of "Applied Food Biotechnology" is licensed under a  CC BY-NC 4.0. International License.

Powered by OJSPlus