Phyto-constituents, Pharmacological Properties and Biotechnological Approaches for Conservation of the Anti-diabetic Functional Food Medicinal Plant Salacia: A Review Note
Applied Food Biotechnology,
Vol. 4 No. 1 (2017),
4 January 2017
,
Page 1-10
https://doi.org/10.22037/afb.v4i1.14499
Abstract
Background and Objective: Genus Salacia L. (Celastraceae) is a woody climbing medicinal plant consisting of about 200 species with many endangered species located throughout the world’s tropical areas. Various parts of the plant as food, functional food additive and tea have been extensively used to treat a variety of ailments like diabetes and obesity as well as inflammatory and skin diseases. The present work reviews the phytochemical properties, pharmacological activities, biotechnological strategy for conservation and safety evaluation of this valuable genus.
Results and Conclusion: More efforts are needed to isolate new phytoconstituents from this important medicinal plant. The echanism of anti-diabetic action has not been done at molecular and cellular levels, thus the fundamental biological understanding is required for future applications. Though the safety of plant species has been well documented and has been confirmed by many toxicological studies, further toxicity research and clinical trials are
recommended. In order to sustain harvest and conservation, agronomic practices for cultivation have to be developed. Establishment of more efficient protocols for in vitro propagation is necessary too. Approaches like genetic manipulation, hairy root culture, media standardization, and use of inducers/precursors for elevation of secondary metabolite levels could also be attractive.
Conflict of interest: The authors report no conflicts of interest.
- ▪ Diabetes ▪ Functional food ▪ Medicinal plant biotechnology ▪ Salacia genus ▪ Pharmacological activities ▪ Phytoconstituents
How to Cite
References
Muraoka O, Morikawa T, Miyake S, Akaki J, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M. Quantitative analysis of neosalacinol and neokotalanol, another two potent α- glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography, J Nat Med. 2011; 65(1)142-148. doi:10.1007/s11418-010-0474-x
Ravikumar K, Ved DK, Vijaya Sankar R, Udayan PS. 100 Red listed medicinal plants of conservation concern in Southern India. Bangalore. 2000.
Ramamurthy K, Naithani BD. Hippocrateaceae. In: Singh NP (ed.), Fl. India 5:138-162. Botanical Survey of India, Calcutta. 2000; 5:138-162.
Deokate UA, Khadabadi SS. Phytopharmacological aspects of Salacia chinensis. J Pharmacognosy Phytother. 2012; 4(1):1-5. doi: 10.5897/JPP11.006
Sellamuthu PS, Arulselvan P, Muniappan BP, Kandasamy M. Effect of mangiferin isolated from Salacia chinensis regulates the kidney carbohydrate metabolism in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 2012; 2(3):1583-1587. doi:10.1016/S2221-1691(12)60457-2
Li Y, Huang TH, Yamahara J. Salacia root: A unique Ayurvedic medicine, meets multiple targets in diabetes and obesity. Life Sci. 2008; 82:1045-1049. doi: 10.1016/j.lfs.2008.03.005
He L, Qi Y, Rong X, Jiang J, Yang Q, Yamahara J, Murray M, Li Y. The Ayurvedic medicine Salacia oblonga attenuates diabetic renal fibrosis in rats: suppression of angiotensin II/AT1 signaling. Evid based Complement Alternat Med. 2009; doi: 10.1093/ecam/nep095.
Akaki J, Morikawa T, Miyake S, Ninomiya K, Okada M, Tanabe G, Pongpiriyadacha Y, Yoshikawa M,Muraoka O, Evaluation of Salacia species as anti-diabetic natural resources based on quantitative analysis of eight sulphonium constituents: a new class of α-glucosidase inhibitors. Phytochem Anal. 2014; 25(6):544-550. doi: 10.1002/pca.2525.
Xie W, Tanabe G, Akaki J, Morikawa T, Ninomiya K, Minematsu T, Yoshikawa M, Wuc X, Muraoka O. Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent a-glucosidase inhibitors. Bioorg Med Chem. 2011; 19:2015-2022. doi: 10.1016/j.bmc.2011.01.052
Yoshikawa M, Xu F, Nakamura S, Wang T, Matsuda H, Tanabe G, Muraoka O. Salaprionol and ponkoranol with thiosugar sulfonium sulfate structure from Salacia prinoides and α-glucosidase inhibitory activity of ponkoranol and kotalanol desulfate. Heterocycles. 2008; 75(6):1397-1405. doi:10.3987/COM-07-11315.
Sneden AT. Isoiguesterin, a new antileukemic isnortriterpene from Salacia madagascariensis. J Nat Prod. 1981; 44:503-507.
Matsuda H, Murakami T, Yashiro K, Yamahara J, Yoshikawa M. Antidiabetic principles of natural edicines.IV. Aldose reductase and alpha-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): structure of a new friedelane-type triterpene, kotalagenin 16-acetate. Chem Pharm Bull. 1999; 47:1725-1729.
Yoshikawa M, Murakami T, Yashiro K, Matsuda H, Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulate. Chem Pharm Bull. 1998; 46:1339-1340.
Karunanayake EH, Sirimanne SR. Mangiferin from the root bark of Salacia reticulate. J Ethnopharmacol. 1985; 13:227-228.
Yoshikawa M, Nishida N, Shimoda H, Takada M, Kawahara Y, Matsuda H. Polyphenol constituents from Salacia species: quantitative analysis of mangiferin with alphaglucosidase and aldose reductase inhibitory activities. Yakugaku Zasshi. 2001; 121:371-378.
Minha TT, Anhb NTH, Thanga VD, Sungb TV. Study on chemical constituents of salacia chinensis L. collected in Vietnam. Z Naturforsch. 2008; 63:1411-1414.
Nakamura S, Zhang Y, Wang T, Matsuda H, Yoshikawa M. New phenolic glycosides from the leaves of Salacia chinensis. Heterocycles. 2008; 75:1435-1446. doi: 10.3987/COM-08-11338
Yoshikawa M, Zhang Y, Wang T, Nakamura S, Matsuda H. New triterpene constituents, foliasalacins A1-A4, B1-B3, and C, from the leaves of Salacia chinensis. Chem Pharm Bull. 2008; 56:915-920.
Krishnan V, Rangaswami S, Chemical components of Salacia chinensis Linn. stems and leaves. Curr Sci. 1967; 36:596-597.
Krishnan V, Rangswami S. Proanthocyanidins of Salacia chinensis Linn. Tetrahedron Lett. 1967; 26:2441-2446. doi:10.1016/S0040-4039(00)90828-1.
Joshi BS, Kamat VN, Viswanathan N. Triterpenes of Salacia prinoides DC. Tetrahedron. 1973; 29:1365-1374. doi:10.1016/S0040-4020(01)83157-4
Rangswami S, Tewari NC. Structure of Salacia Diketone-A from Salacia prenoides. Curr Sci. 1971; 40:36.
Heymann H, Bhatnagar SS, Fieser LF. Characterization of two substances isolated from an Indian shrub. J Am Chem Soc. 1954; 76(14):3689–3693.
Rogers D, Williams DJ, Joshi BS, Kamat VN, Viswanathan N. Structure of new triterpene ether from Salacia prinoides dc: xray investigation of the dibromo derivative. Tetrahedron Lett. 1974; 15:63-66. doi:10.1016/S0040-4039(01)82137-7
Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J Nat Prod. 2003; 66:1191-1196. doi:10.1021/np0301543.
Kishi A, Morikawa T, Matsuda H, Yoshikawa M. Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis LINN. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull. 2003; 51(9):1051-1055.
Zhang Y, Nakamura S, Wang T, Matsuda H, Yoshikawa M. The absolute stereostructures of three rare D:B-friedobaccharane skeleton triterpenes from the leaves of Salacia chinensis. Tetrahedron. 2008; 64:7347–7352.
Gunatilaka AAL, Dhanahbalsingham B, Karunaratne V, Kikuchi T, Tezuka Y. Studies on terpenoids and stereoids. Part27. Structure of a D: A-friedo-oleanane triterpenoid from salacia reticulata and revision of the structures of kokoonol and kokzeylanol series of triterpenoids. Tetrahedron. 1993; 49:10397-10404.
Kumar V, Mohammed IMW, Dharmasree BTW. 2lα, 26-dihydroxy-D: a friedooleanan-3-one from salacia reticulata var. diandra (Celastraceae). Phytochemistry. 1985; 24: 2067-2069. doi:10.1016/S0031-9422(00)83123-4
Hisham A, Kumar GJ, Fujimoto Y, Hara N. Salacianone and salacianol, two triterpenes from Salacia beddomei. Phytochemistry. 1995; 40:1227-1231.
Hisham A, Kumar GJ, Fujimoto Y, Hara N. 20,29-Epoxysalacianone and 6β-hydroxysalacianone, two lupine triterepenes from Salacia beddomei. Phytochemistry. 1996; 42:789-794. doi: 10.1016/0031-9422(95)00943-4.
Tewari NC, Ayengar KNN, Rangaswami S. Structure of some crystalline components of Salacia Prenoides. Curr Sci. 1971; 40:601-602.
Somwong P, Suttisri R, Buakeaw A. A new 1,3-diketofriedelane triterpene from Salacia verrucosa. Fitoterapia. 2011; 82:1047- 1051. doi: 10.1016/j.fitote.2011.06.007
Dhanabalasingham B, Karunaratne V, Tezuka YT, Gunatilaka AAL. Biogenetically important quinonemethides and other triterpenoid constituents of salacia reticulate. Phytochemistry. 1996; 42:1377-1385. doi:10.1016/0031-9422(96)00886-2.
Ruphin FP, Baholy R, Emmanue A, Amelie R, Martin MT, Nyiwa NK. Antiplasmodial, cytotoxic activities and characterization of a new naturally occurring quinone methide pentacyclic triterpenoid derivative isolated from Salacia leptoclada Tul. (Celastraceae) originated from Madagascar. Asian Pac J Trop Biomed. 2013; 3:780-784. doi:10.1016/S2221-1691(13)60155-0
Huang J, Guo Z, Cheng P, Sun B, Gao HY. Three new triterpenoids from Salacia hainanensis Chun et how showed effective anti-α-glucosidase activity. Phytochem Lett. 2012; 5:432-437. doi:10.1016/j.phytol.2012.03.016.
Thiem DA, Sneden AT, Khan SI, Tekwani BL. Bisnortriterpenes from Salacia madagascariensis. J Nat Prod. 2005; 68:251-254. doi:10.1021/np0497088.
Robert BB, William AH, William NS, Chad CS. Cyclic hemiacetals with seven-membered rings from an undescribed Salacia species from Monteverde, Costa Rica. J Nat Prod. 1999; 62:340-341. doi: 10.1021/np980345j.
Yoshikawa M, Murakami T, Shimada H, Matsuda H, Yamahara J, Tanabe G, Muraoka O. Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India. Tetrahedron Lett. 1997; 38:8367–8370. doi:10.1016/S0040-4039(97)10270-2.
Yu MH, Shi ZF, Yu BW, Pi EH, Wang HY, Hou AJ, Lei C. Triterpenoids and α-glucosidase inhibitory constituents from Salacia hainanensis. Fitoterapia. 2014; 98:143–148. doi: 10.1016/j.fitote-.2014.07.016.
Brice MM, Bruno NL, Diderot TN, Cyril A, Yanick FF, Silvère AN, Fabrice FB, Philip JR, Tsamo E, Sewald N, Laatsch H. Antiplasmodial sesquiterpenes from the seeds of Salacia longipes var. camerunensis. Phytochemistry. 2013; 96:347-352. doi: 10.1016/j.phytochem.2013.06.022.
Hisham A, Kumar GJ, Fujimoto Y, Hara N. 1β,15α- Dihydroxyfriedelan-3-one, a triterpene from Salacia beddomei. Phytochemistry. 1996; 43:843-845. doi:10.1016/0031-9422(96)00318-4.
Kawazoe K, Shimogai N, Takaishi Y, Rao KS, Imakura Y. Four stilbenes from Salacia lehmbachii. Phytochemistry. 1997; 44:1565-1573. doi:10.1016/S0031-9422(96)00768-6.
Corsino J, Carvalho PRF, Kato MJ, Latorre LR, Oliveira OMMF, Araujo AR, Bolzani VDS. Biosynthesis of friedelane and quinonemethide triterpenoids is compartmentalized in Maytenus aquifolium and Salacia campestris. Phytochemistry. 2000; 55:741-748. doi:10.1016/S0031-9422(00)00285-5
Mohamad TAST, Naz H, Ratni SJ, Hussin K, Abd RMR, Adam A, Weber JFF. Chemical and pharmacognostical characterization of two Malaysian plants both known as Ajisamat. Rev Bras Farmacogn. 2013; 23:724-730. doi:10.1590/S0102-695X2013000500002
Carvalho PR, Silva DH, Bolzani VS, Furlan M. Antioxidant quinonemethide triterpenes from Salacia campestris. Chem Biodivers. 2005; 2:367-372. doi:10.1002/cbdv.200590016
Somwong P, Suttisri R. Two new friedelane triterpenoids from Salacia verrucosa. Paper presented in 9th NRCT-JSPS Joint Semin on Nat Medicine in Pharmaceutical Sci, Chulalongkorn University, Bangkok. Thailand, 8-9 December, 2010.
Ramamoorthy J, Vanathy MR, Venkataraman S, Devi P. Phytochemical investigation and anti-inflammatory activity of Salacia reticulate. J Chem Pharm Res. 2010; 2(5):618-625.
Rana GS, Surendra SR, Rajesh K, Usha, Aruna A, Govind PD. Nephroprotective role of Salacia chinensisin diabetic CKD patients: a pilot study. Indian J Med Sci. 2010; 64:378-384. doi:10.4103/0019-5359.100341.
Singh A, Duggal S. Salacia Species: Hypoglycemic principles and possible role in diabetes management. Integrative Med. 2010; 9(4):40-43.
Nadagouda SG, Karigar AA, Joshi VG & Sikarwar MS. Validated HPTLC method for mangiferin in Salacia chinensis. J Pharm Res. 2010; 1:1107-1109.
Karunanayake EH, Welihinda J, Sirimanne SR, Sinnadorai G. Oral hypoglycaemic activity of some medicinal plants of Sri Lanka. J Ethnopharmacol. 1984; 11(2): 223- 231.
Hiromi OE, Ozaki S. Hypoglycemic effect of 13-membered ring thiocyclitol, a novel alpha-glucosidase inhibitor from Kothalahimbutu (Salacia reticulata). Biosci Biotechnol Biochem. 2008; 72(7):1962-1964. doi:10.1271/bbb.80118
Yoshikawa M, Pongpiriyadacha Y, Kishi A, Kageura T, Wang T, Morikawa T, Matsuda H. Biological activities of Salacia chinensis originating in Thailand: the quality evaluation guided by alpha-glucosidase inhibitory activity. Yakugaku Zasshi. 2003; 123:871-880.
Yoshino K, Miyauchi Y, Kanetaka T, Takagi Y, Koga K. Antidiabetic activity of a leaf extract prepared from Salacia reticulata in mice. Biosci Biotechnol Biochem. 2009; 73(5):1096-1104. doi: 10.1271/bbb.80854.
Patwardhan A, Pimputkar M, Joshi R. Evaluation of antidiabetic property of extracts of different plant parts of Salacia chinensis Linn. J Biodivers Biopros Dev. 2014; 1:1-4. doi:10.4172- ijbbd.1000107.
Chandra V, Rathi D, Rohini E. Effect of dehydrated Salacia prinoides on experimental mice and on NIDDM subjects. Indian J Sci Tech. 2011; 4:366-372.
Minh TT, Anh N TH, Thang VD, Sung TV. Study on chemical constituents and cytotoxic activities of Salacia chinensis growing in Vietnam. Z Naturforsch. 2010; 65:1284-1288.
Matsuda H, Yoshikawa M, Morikawa T, Tanabe G, Muraoka O. Anti-diabetogenic constituents from Salacia species. J Tradit Med. 2005; 22(1):145-153.
Sikarwar MS, Patil MB. Antihyperlipidemic activity of Salacia chinensis root extracts in triton-induced and atherogenic dietinduced hyperlipidemic rats. Indian J Pharmacol. 2012; 44(1):88-92.
Kannaiyan M, Manuel VN, Raja V, Thambidurai P, Mickymaray S, Nooruddin T.Antimicrobial activity of the ethanolic and aqueous extracts of Salacia chinensis Linn. against human pathogens. Asian Pac J Trop Dis. 2012; 2:416-420. doi:10.1016/S2222-1808(12)60194-7.
Govindaraj Y, Melanaphuru V, Agrahari V, Gupta S, Nema RK. Genotoxicity studies of magiferin isolated from Salacia chinensis Linn, Aca J Plant Sci. 2009; 2:199-204.
Naveen A. Hepatoprotective activity of ethanolic extract of root bark of Salacia chinensis. J Pharm Res. 2010; 3:833-834.
Koteshwar P, Raveendra KR, Allan JJ, Goudar KS, Venkateshwarlu K, Agarwal A. Effect of NR-Salacia on postprandial hyperglycemia: A randomized double blind, placebocontrolled, crossover study in healthy volunteers. Phcog Mag. 2013; 9:344-349. doi: 10.4103/0973-1296.117831
Sumalatha RBP, Shwetha RB, Sadananda A. Studies on immunomodulatory effects of Salacia chinensis on albino Rats. J App Pharm Sci. 2012; 2:98-107.
Jihong Y, Shaozhong L, Jingfeng S, Kobayashi M, Akaki J, Yamashita K, Tamesada M, Umemura T. Effects of Salacia chinensis extract on reproductive outcome in rats. Food ChemToxicol. 2011; 49:57-60. doi: 10.1016/j.fc-t.2010.09.031
Radha R, Amritha VM. Role of medicinal plant Salacia reticulata in the management of type II diabetic subjects. Ancient Sci Life. 2009; 29:14-16.
Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity affects in rats. J Nutr. 2002; 132:1819-1824.
Williams JA, Choe YS, Noss MJ, Baumgartner CJ, Mustad VA. Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am J Clin Nut. 2007; 86:124-130.
Im R, Mano H, Nakatani S, Shimizu J, Wada M. Aqueous extract of Kothala himbatu (Salacia reticulata) stems promotes oxygen consumption and suppresses body fat accumulation in mice. J Health Sci. 2008; 54(6):645-653.
Rajashree R, Parineetha PB, Ravishankar MV. Effects of a mixture Of Salacia reticulata W. and Catharanthus roseus L. extracts in streptozotocin-induced juvenile diabetic rats. J Physiol Biomed Sci. 2011; 24:5-8. doi:10.1.1.392.217
Kumara NKVMR, Pathirana RN, Pathirana C, Hypoglycemic activity of the root and stem of salacia reticulate var. β-diandra. Alloxan Diabetic Rats Pharmaceutical Biology. 2005; 43:219-225. doi:1080/13880200590928780
Shimada T, Nagai E, Harasawa Y, Watanabe M, Negishi K, Akase T, Sai Y, Miyamoto K, Aburada M. Salacia reticulate inhibits differentiation of 3T3-L1 adipocytes. J Ethnopharmacol. 2011; 136:67-74. doi:10.1016/j.jep.2011.04.012.
Navneet KS, Biswas A, Rabbani SI, Devi K, Khanam S. Hyrdoalcoholic root bark extract of Salacia oblonga prevented mitomycin-c induced sperm abnormality in wistar rats. Pharmacognosy magazine. 2009; 5:254-259.
Palani SS, Raja SS, Kumar S, Nirmal SN, Kumar B, Senthil BS. Nephroprotective and antioxidant activities of Salacia oblonga on acetaminophen-induced toxicity in rats. Nat Prod Res. 2011; 25:1876-1880.
Kalaiarasi JMV, Rja M, Dass JA. The influence of aluminium chloride and extract of Salacia oblonga on biochemical parameters in Wistar albino rat. Int J Curr Res. 2011; 3:91-94.
Rao MJP, Giri A. Antimicrobial activity of the extract of Salacia oblonga Wall. Recent res sci technol. 2010; 2(10):1-4.
Rao TM, Murty PP. In-vitro antibacterial activity of Salacia oblonga Wall. Recent res sci technol. 2010; 2(6):71-75.
Wang J, Rong X, Li W, Yamahara J, Li Y. Salacia oblonga ameliorates hypertriglyceridemia and excessive ectopic fat accumulation in laying hens. J Ethnopharmacol. 2012; 142: 221-227. doi:10.1016/j.jep.2012.04.048
Nakata K, Taniguchi Y, Yoshioka N, Yoshida A, Inagawa H, Nakamoto T, Yoshimura H, Miyake S, Kohchi C, Kuroki M, Soma G. A mixture of Salacia oblonga extract and IP-PA1 reduces fasting plasma glucose (FPG) and low-density lipoprotein (LDL) cholesterol levels. Nutr Res Pract. 2011; 5(5):435-442. doi:10.4162/nrp.2011.5.5.435
Huang TH, Yang Q, Harada M, Uberai J, Radford J, Li GQ, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-alpha-mediated transcription of fatty acid metabolic genes. Toxicol Appl Pharmacol. 2006; 210:78-85. doi: 10.1016/j.taap.2005.07.020
Shivaprasad HN, Bhanumathy M, Sushma G, Midhun T, Raveendra KR, Sushma KR, Venkateshwarlu K. Salacia reticulata improves serum lipid profiles and glycemic control in patients with prediabetes and mild to moderate hyperlipidemia: a double-blind, placebo-controlled, randomized trial. J Med Food. 2013; 16:564-568.
Huang TH, Peng G, Li GQ, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha. Toxicol Appl Pharmacol. 2006; 210:225-235. doi:10.1016/j.taap.2005.05.003
Akase T, Shimada T, Harasawa Y, Akase T, Ikeya Y, Nagai E, Iizuka S, Nakagami G, Iizaka S, Sanada H, Aburada M. Preventive effects of Salacia reticulata on obesity and metabolic disorders in TSOD mice. Evid Based Complement Alternat Med. 2011; doi: 10.1093/ecam/nep052.
Li Y, Peng G, Li Q, Wen S, Huang TH, Roufogalis BD, Yamahara J. Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese Zucker rats. Life Sci. 2004; 75:1735-1746.
Huang TH, He L, Qin Q, Yang Q, Peng G, Harada M, Qi Y, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root decreases cardiac hypertrophy in Zucker diabetic fatty rats: inhibition of cardiac expression of angiotensin II type 1 receptor. Diabetes Obes Metab. 2008; 10:574-585. doi: 10.1111/j.1463-1326.2007.00750.x
Ismail ST, Gopalakrishnan S, Begum HV, Elango V. Antiinflammatory activity of Salacia oblonga Wall. and Azima tetracantha Lam. J Ethnopharmacol. 1997; 56(2):145-152.
Sekiguchi Y, Mano H, Nakatani S, Shimizu J, Wada M. Effects of the Sri Lankan medicinal plant, Salacia reticulata, in rheumatoid arthritis, Genes Nutr. 2010; 5:89-96. doi:10.1007/s12263-009-0144-3
Sharma K, Bhagya N, Sheik S, Samhitha M. Isolation of endophytic Colletotrichum gloeosporioides Penz. from Salacia chinensis and its antifungal sensitivity. J Phyto. 2011; 3(6):20-22.
Phulwaria M, Shekhawat N, Rathore J, Singh R. An efficient in vitro regeneration and ex vitro rooting of Ceropegia bulbosa Roxb.-a threatened and pharmaceutical important plant of Indian Thar Desert. Ind Crops Prod. 2013; 42:25-29.
Deepak KGK, Suneetha, G, Surekha C. A simple and effective method for vegetative propagation of an endangered medicinal plant Salacia oblonga Wall. J Nat Med. 2016; 70:115-119. doi:10.1007/s11418-015-0932-6
Dhanasri G, Srikanth RM, Naresh B, Cherku D. Micropropagation of Salacia reticulata - an endangered medicinal plant. Plant Tissue Cult Biotech. 2013; 23(2):221-229. doi: http://dx.doi.org/10.3329/ptcb.v23i2.17523
Majid BN, Sampath KKK, Prakash HS, Geetha N. Rapid mass propagation of Salacia chinensis l., an endangered valuable medicinal plant through direct organogenesis. Indian J Sci Technol. 2016; 9:1-8. doi:10.17485/ijst/2016/v9i4/84743
Flammang AM, Erexson GL, Mirwald JM, Henwood SM. Toxicological and cytogenetic assessment of a Salacia oblonga extract in a rat subchronic study. Food Chem Toxicol. 2007; 45(10):1954-1962. doi:10.1016/j.fct.2007.04.013.
Shimoda H, Fujimura T, Makino K and Yoshijima K. Safety profile of extractive from trunk of Salacia reticulate (Celastraceae). Shokuhin Eiseigaku Zasshi. 1999; 40(3):198-205. doi:10.3358/shokueishi.40.3_198
Ratnasooriya WD, Jayakody JRAC, Premakumara GAS. Adverse pregnancy outcome in rats following exposure to a Salacia reticulata (Celastraceae) root extract. Braz J Med Biol Res. 2003; 36:931-935. doi:10.1590/S0100-879X2003-000700015
Wolf BW, Weisbrode SE. Safety evaluation of an extract from Salacia oblonga. Food Chem Toxicol. 2003; 41:867-874.
- Abstract Viewed: 1802 times
- PDF Downloaded: 531 times