Potential Health Effects of Enzymatic Protein Hydrolysates from Chlorella vulgaris
Applied Food Biotechnology,
Vol. 3 No. 3 (2016),
,
Page 160-169
https://doi.org/10.22037/afb.v3i3.11306
Abstract
Background and Objective: Chlorella vulgaris is a multi-cellular edible algal species with abundant proteins. Extraction of high value protein fractions for pharmaceutical and nutritional applications can significantly increase the commercial value of microalga biomasses. There is no known report on the anticancer peptides derived from the Chlorella vulgaris abundant protein.
Materials and Methods: This study examined the antimicrobial and anticancer effects of peptides from a hydrolyzed Chlorella vulgaris protein with 62 kDa molecular weight. Protein hydrolysis was done by pepsin as a gastrointestinal protease, and was monitored through protein content measurement, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and high performance liquid
chromatography measurements. Inhibitory effect of the produced peptides on Escherichia coli cells and breast cancer cell lines was assayed.
Results and Conclusion: Hydrolyzed peptides induced a decrease of about 34.1% in the growth of Escherichia coli, and the peptides of 3 to 5 kDa molecular weight had strong impact on the viability of breast cancer cells with IC50 value of 50 μg μl-1. The peptide fractions demonstrating antimicrobial and anti-cancer activities have the potential for use as functional food ingredients for health benefits. These results demonstrate that inexpensive algae proteins
could be a new alternative to produce anticancer peptides.
Conflict of interest: The authors declare that there is no conflict of interest.
- Bioactive peptides
- Microalgae
- Pepsin
- Protein
How to Cite
References
Chojnacka K, Kim SK. Introduction of Marine Algae Extracts, in Marine Algae Extracts. Wiley VCH Verlag GmbH & Co. KGaA. 2015; 1-14.
El Gamal AA. Biological importance of marine algae. Saudi Pharm J. 2010; 18(1): 1-25. doi: 10.1016/j.jsps.2009.12.001.
Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004; 65(6): 635-648. doi: 10.1007/s00253-004-1647-x
Morris HJ, Carrillo OV, Almarales A, Bermudez RC, Alonso ME, Borges L, Quintana MM, Fontaine R, Liaurado G, Hernandez M. Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immunonutrition. Biotecnol Apl. 2009; 26(2): 162-165.
Anupama, Ravindra P. Value-added food: Single cell protein. Biotechnol Adv. 2000; 18(6): 459-479. doi:10.1016/S0734-9750(00)00045-8
Zhang B, Zhang X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol Prog. 2013; 29(5): 1230-1238. doi:10.1111/j.1750-3841.2011.02455.x
Walker T.L, Purton S, Becker D.K, Collet C. Microalgae as bioreactors. Plant Cell Reports, 2005; 24(11): 629-641. doi: 10.1007/s00299-005-0004-6.
Becker E.W. Micro-algae as a source of protein. Biotechnol Adv. 2007; 25(2): 207-210. doi: 10.1016/j.biotechadv.2006.11.002.
Plaza M, Herrero M, Cifuentes A, Ibanez E. Innovative natural functional ingredients from microalgae. J Agric Food Chem. 2009; 57(16): 7159-7170. doi: 10.1021/jf901070g.
Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods. 2010; 2(1): 1-9. doi:10.1016/j.jff.2010.01.003.
Schwenzfeier A, Wierenga PA, Gruppen H. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol. 2011;102(19): 9121-9127. doi: 10.1016/j.biorthch.2011.07.046.
Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. Functional ingredients from microalgae. Food Funct. 2014; 5(8): 1669-1685. doi: 10.1039/c4fo00125g. 13. Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013; 93(4): 703-709.
Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs. 2011; 9(6): 1056-1100. doi: 10.3390/md9061056.
Plaza M, Cifuentes A, Ibáñez E. In the search of new functional food ingredients from algae. Trends Food Sci Technol. 2008; 19(1): 31-39. doi:10.1016/j.tifs.2007.07.012.
Kim SK, Chojnacka K. Marine Algae Extracts: Processes, Products, and Applications, 2 Volume Set. 2015: John Wiley & Sons. ISBN 978-3-527-33708-8.
Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000; 256(1): 42-49. doi: 10.1006/excr.2000.4838.
Russo M, Tedesco I, Iacomino G, Palumbo R, Galano G, Russo GL. Dietary phytochemicals in chemoprevention of cancer. Current Med Chem-Immun, Endoc & Metab. Agents. 2005; 5(1): 61-72. doi: 10.2174/1568013053005454.
Kim SE, Kim HH, Kim JY, Kang YI, Woo HJ, Lee HJ. Anticancer activity of hydrophobic peptides from soy proteins. Biofactors. 2000; 12(1‐4): 151-155. doi:10.1002/biof.5520120124.
Kralovec JA, Power MR, Liu F, Maydanski E, Ewart HS, Watson LV, Barrow CJ, Lin TJ. An aqueous Chlorella extract inhibits IL-5 production by mast cells in vitro and reduces ovalbumin-induced eosinophil infiltration in the airway in mice in vivo. Int Immunopharmacol. 2005; 5(4): 689-698. doi:10.1016/j.intimp.2004.11.016.
Janczyk P, Franke H, Souffrant WB. Nutritional value of Chlorella vulgaris: Effects of ultrasonication and electroporation on digestibility in rats. Anim. Feed Sci Technol. 2007; 132(1–2): 163-169. doi:10.1016/j.anifeedsci.2006.03.007.
Sheih IC, Fang TJ, Wu TK, Lin PH. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J Agric Food Chem. 2009; 58(2): 1202-1207. doi: 10.1021/jf903089m.
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs. 2010; 8(4): 1213-1262. doi: 10.3390/md8041213.
Chen CL, Liou SF, Chen SJ, Shih MF. Protective effects of Chlorella-derived peptide on UVB-induced production of MMP-1 and degradation of procollagen genes in human skin fibroblasts. Regul Toxicol Pharmacol. 2011; 60(1): 112-119. doi:10.1016/j.yrtph.2011.03.001.
Sheih IC, Wu TK, Fang TJ. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol. 2009; 100(13): 3419-3425. doi:10.1016/j.biortech.2009.02.014.
Mendez L, Mahdy A, Ballesteros M, Gonzalez-Fernandez C. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield. Energy Convers Manage. 2015; 92: 137-142. doi:10.1016/j.enconman.2014.11.050.
Morris HJ, Almarales A, Carrillo O, Bermudez RC. Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresour Technol. 2008; 99(16): 7723-7729. doi:10.1016/j.biortech.2008.01.080.
Kang KH, Qian ZJ, Ryu B, Kim D, Kim SK. Protective effects of protein hydrolysate from marine microalgae Navicula incerta on ethanol-induced toxicity in HepG2/CYP2E1 cells. Food Chem. 2012; 132(2): 677-685. doi: 10.1016/j.foodchem.2011.10.031.
Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int Dairy J. 2006; 16(9): 945-960. doi: 10.1016/j.idairyj.2005.10.012.
Morris HJ, Carrillo O, Almarales A, Bermudez RC, Lebeque Y, Fontaine R, Liaurado G, Beltran Y. Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme Microb Technol. 2007; 40(3): 456-460. doi: 10.1016/j.enzmictec.2006.07.021.
Tran NP, Park JK, Lee CG. Proteomics analysis of proteins in green alga Haematococcus lacustris (Chlorophyceae) expressed under combined stress of nitrogen starvation and high irradiance. Enzyme Microb Technol. 2009; 45(4): 241-246. doi:10.1016/j.enzmictec.2009.07.006
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1): 248-254. doi: 10.1016/0003- 2697(76)90527-3.
Church FC, Swaisgood HE, Porter DH, Catignani GL. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci. 1983; 66(6): 1219-1227. doi: 10.3168/jds.S0022-0302(83)81926-2.
Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986; 89(2): 271-277. doi: 10.1016/0022-17598690368-6.
Udenigwe CC, Aluko RE. Food protein‐derived bioactive peptides: Production, processing, and potential health benefits. J Food Sci. 2012; 77(1): R11-R24. doi: 10.1111/j.1750-3841.2011.02455.x.
Di Bernardini R, Harnedy P, Bolton D, Kerry J, O'Neill E, Mullen AM, Hayes M. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 2011; 124(4): 1296-1307. doi: 10.1016/j.foodchem.2010.07.004.
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, Biomembr. 2008; 1778(2): 357-375. doi: 10.1016/j.bbamem.2007.11.008.
Moghaddam MM, Aghamollaei H, Kooshki H, Azizi K, Mirnejad R, Choopani A. The development of antimicrobial peptides as an approach to prevention of antibiotic resistance. Rev Med Microbiol. 2015; 26(3): 98-110. doi: 10.1097/MRM.0000000000000032.
Wang W, Bringe NA, Berhow MA, Gonzalez de Mejia E. β-Conglycinins among sources of bioactivesin hydrolysates of different soybean varieties that inhibit leukemia cells in vitro. J Agric Food Chem. 2008; 56(11): 4012-4020. doi: 10.1021/jf8002009.
Guzm-Rodriguez JJ, Ochoa-Zarzosa A, Lopez-Gomez R, Lopez-Meza JE. Plant antimicrobial peptides as potential anticancer agents. BioMed Res Int. 2015; 1-11. doi: 10.1155/2015/735087.
Kannan A, Hettiarachchy N, Narayan S. Colon and breast anti-cancer effects of peptide hydrolysates
derived from rice bran. Open Bioact Compd J. 2009; 4: 17-20.
Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar Drugs. 2012; 10(5): 963-986. doi:10.3390/md10050963.
Alemán A, Perez-Santin E, Bordenave-Juchereau S, Arnaudin I, Gomez-Guillen MC, Montero P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int. 2011; 44(4): 1044-1051. doi: 10.1016/j.foodres.2011.03.010.
Mayer AM, Gustafson KR. Marine pharmacology in 2003-2004: anti-tumour and cytotoxic compounds. Eur J Cancer. 2006; 42(14): 2241-2270. doi:10.1016/j.ejca.2006.05.019.
- Abstract Viewed: 2988 times
- PDF Downloaded: 1272 times