Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media
Applied Food Biotechnology,
Vol. 3 No. 1 (2016),
30 December 2015
,
Page 35-41
https://doi.org/10.22037/afb.v3i1.10582
Abstract
The effect of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus (PTCC 1734) and two newly isolated strains (from vinegar) under static culture conditions was studied. The production of bacterial cellulose was examined in modified Hestrin-Shramm medium by replacing D-glucose with other carbon sources. The results showed that the yield and characteristics of bacterial cellulose were influenced by the type of carbon source. Glycerol gave the highest yield in all of the studied strains (6%, 9.7% and 3.8% for S, A2 strain and Gluconacetobacter xylinus (PTCC 1734), respectively). The maximum dry bacterial cellulose weight in the glycerol containing medium is due to A2 strain (1.9 g l-1) in comparison to Gluconacetobacter xylinus as reference strain (0.76 g l-1). Although all of the studied strains were in Gluconacetobacter family, each used different sugars for maximum production after glycerol (mannitol and fructose for two newly isolated strains and glucose for Gluconacetobacter xylinus). The maximum moisture content was observed when sucrose and food-grade sucrose were used as carbon source. Contrary to expectations, while the maximum thickness of bacterial cellulose membrane was attained when glycerol was used, bacterial cellulose from glycerol had less moisture content than the others. The oxidized cellulose showed antibacterial activities, which makes it as a good candidate for food-preservatives.
- Bacterial cellulose
- Carbon sources
- Fermentation media
- Gluconacetobacter
- Optimization
How to Cite
References
Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A , Cheng KC. Biosynthesis, production and applications of bacterial cellulose. Cellulose. 2013; 20: 2191-2219. DOI: 10.1007/s10570-013-9994-3
Siro I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose. 2010; 17:459–494. DOI: 10.1007/s10570-010-9405-y
Al-Shamary EE, Al- Darwash AK. Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. Online J. Sci. Technol. 2013; 3:194-203.
Shi Z, Zhang Y, Phillips GO, Yang G. Utilization of bacterial cellulose in food. Food Hydrocolloids. 2013; 35: 539-545. DOI: 10.1016/j.foodhyd.2013.07.012
Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. 2009; 47: 107–124. ISSN 1330-9862
Sukara E, Meliawati R. Potential Values of Bacterial cellulose for industrial applications. Jurnal Selulosa. 2014; 4: 7 – 16.
Esa F, Tasirin SM, Abd Rahman N. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia. 2014; 2: 113–119. DOI: 10.1016/j.aaspro.2014.11.017
Keshk SM. Bacterial Cellulose Production and its Industrial Applications. J Bioprocess Biotech. 2014; 4:1-10. DOI: 10.4172/2155-9821.1000150
Denise M, Rosilene A, Adenise L, Gilvan W. Application of bacterial cellulose conservation of minimally processed fruits. Rev Bras Tecnol Agro industrial. 2011; 5(1):356-366. DOI: 10.3895/S1981-36862011000100011
Mesomya W, Pakpeankitvatana V, Komindr, S, Leelahakul P, Cuptapun Y, Hengsawadi D, Tammarate P, Tangkanakul P. Effects of Health Food from Cereal and Nata De Coco on Serum Lipids in Human. J. Sci. Technol. 2006; 28 (1): 23-28.
Okiyama A, Motoki M, Yamanaka S. Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocolloids. 1992; 6(5): 479-489. DOI: 10.1016/S0268-005X (09)80033-7
Keshk S, Sameshima K. Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol. 2005; 4: 478-482. ISSN: 1684-5315
Carreira P, Mendes JA, Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technol. 2011; 102 (15):7354-60.DOI: 10.1016/j.biortech.2011.04.081
Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J. 1959; 663 (29): 786-794. DOI: 10.1177/004051755902901003 15. Vazquez A, Foresti ML, Cerrutti P, Galvagno M. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 2013; 21:545–554. DOI: 10.1007/s10924-012-0541-3 16. Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol. 2013; 97(14): 6189-6199. DOI: 10.1007/s00253-013-4908-8
TsoukoE, Kourmentza C, Ladakis D, Kopsahelis N, MandalaI, Papanikolaou S, Paloukis F, AlvesV, Koutinas A. Bacterial Cellulose Production from Industrial Waste and by-Product Streams. Int. J. Mol. Sci. 2015; 16: 14832-14849. DOI: 10.3390/ijms160714832
Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, KimYG, Son HJ. Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour. Technol. 2010; 101: 3602-3608. DOI: 10.1016/j.biortech.2009.12.111
Panesar PS, Chavan Y, Bera MB, Chand O, Kumar H. Evaluation of Acetobacter Strain for the Production of Microbial Cellulose. Asian J. Chem. 2009; 21(10):99-102.
Ramana KV, Tomar A, Singh L. Effectof various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol. 2000; 16:245-248.DOI: 10.1023/A: 1008958014270
Jonas R, Farah LF. Production and application of microbial cellulose. Polym Degrad Stabil. 1998; 59:101-106. DOI: 10.1016/S0141-3910(97)00197-3
Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol. 2009; 107:576–583. DOI: 10.1111/j.1365-2672.2009.04226.x
Paulo da Silva G, Mack M, Contiero. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotech Adv. 2009; 27(1): 30-39. DOI: 10.1016/j.biotechadv.2008.07.006
Tang WH, Jia SR, Jia YY, Yang HJ. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol.2010; 26:125–131. DOI: 10.1007/s11274-009-0151-y
Marchler-Bauer A. (2015), "CDD: NCBI's conserved domain database. Nucleic Acids Res. 43 (Database issue):D222-6.Available at: http://www.ncbi.nlm.nih.gov/gene/25559535
- Abstract Viewed: 3278 times
- PDF Downloaded: 3040 times