Publisher: School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences
  • Register
  • Login

Archives of Advances in Biosciences

  • Home
  • Issues
    • Current
    • Archives
  • About
    • About the Journal
    • Editorial Board
    • Privacy Statement
    • Financial Policies
    • Indexing/Abstracting
    • Contact
  • For Authors
    • Submissions
    • Author Guidelines
    • Ethical Guidelines
    • Code of Publishing Ethics
    • Allegations of misconduct
    • Principles of Transparency
    • Editorial Policies
    • Conflict of Interest
    • Copyright
    • CrossMark Policy
    • Article withdrawal
    • Complaints process
    • FAQ
  • For Reviewers
    • Reviewer Guidelines
    • Policies of Peer Review
  • Announcements
  • Manuscript Template
    • Original Article
    • Review Article
    • Case Reports
    • Short Communication
Advanced Search
  1. Home
  2. Archives
  3. Vol. 13 No. 2 (2022): Continuous Volume
  4. Review Article

Continuous Volume
Vol. 13 No. 2 (2022)

Design, Effectiveness, Limitations and Future Perspectives of CAR-T Cells: A Review Article

  • Hamid Chegni
  • Sarina Entezari

Archives of Advances in Biosciences, Vol. 13 No. 2 (2022), , Page 1-13
https://doi.org/10.22037/aab.v13i1.38054 Published 19 February 2023

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Context: Targeted anti-cancer approaches bring about individual therapies to combat the complexity of most malignancies and enhance their chances of success. Currently, immunotherapy, which exploits the patient's immune system to fight the disease, has made a significant progress in the success rate of cancer treatment. T lymphocytes are one of the most powerful arms of the immune system against cancer cells; however, many tumor cells can escape by hiding their peptide antigens.


Evidence Acquisition: CAR-T cells can detect tumor cells' HLA without any restrictions. Promising outcomes from CAR-T cell clinical trials have increased hope among cancer patients, making CAR-T cell a prospective treatment for most cancers. However, its unique toxicities and the possibility of recurrence have raised concerns among scientists.


Results: Therefore, in this review, in addition to the design of CAR-T cells, we intend to discuss the process of CAR-T cell therapy in the treatment of malignancies and explore its disadvantages, advantages, and prospects.


Conclusion: Despite extensive studies, it is not yet possible to confirm the role of CAR-T cells, but based on the experience of applying CAR-T cells, a definite treatment is feasible through immunotherapy and strengthening the immune system.

Keywords:
  • Adoptive immunotherapy, Chimeric antigen receptor (CAR), Cytokine release syndrome, Toxicity
  • PDF
  • MP3

How to Cite

Chegni, H., & Entezari, S. (2023). Design, Effectiveness, Limitations and Future Perspectives of CAR-T Cells: A Review Article. Archives of Advances in Biosciences, 13(2), 1-13. https://doi.org/10.22037/aab.v13i1.38054
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Johnson SB, Park HS, Gross CP, Yu JB. Use of alternative medicine for cancer and its impact on survival. J Natl Cancer Inst. 2018; 110(1):121-4. [DOI:10.1093/jnci/djx145] [PMID]

Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front Immunol. 2017; 8:1-13. [DOI:10.3389/fimmu.2017.01850] [PMID] [PMCID]

Noori Daloii MR, Rahimi Rad N, Kavoosi S. CAR T-cells: Novel targeted therapies in cancer. J Sabzevar Univ. 2018; 25(1):1-11. [https://www.sid.ir/en/Journal/ViewPaper .aspx?ID=604179]

Guedan S, Calderon H, Posey Jr AD, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev. 2019; 12:145-56. [DOI:10.1016/j.omtm.2018.12.009] [PMID] [PMCID]

Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor-T cell therapy: Applications and challenges in treatment of allergy and asthma. Biomed Pharmacother. 2020; 123:109685. [DOI:10.1016/j.biopha.2019.109685] [PMID]

Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989; 86(24):10024-8. [DOI:10.1073/pnas.86.24.10024] [PMID] [PMCID]

Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid tumors challenges and new insights of CAR T cell engineering. Stem Cell Rev Rep. 2019; 15(5):619-36. [DOI:10.1007/s12015-019-09901-7] [PMID]

Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T‐cell immunotherapy for human cancer. Am J Hematol. 2019; 94(1):3-9. [DOI:10.1002/ajh.25418] [PMID]

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021; 11(4):1-11. [DOI:10.1038/s41408-021-00459-7]

Becker ML, Near R, Mudgett-Hunter M, Margolies MN, Kubo RT, Kaye J, et al. Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell. 1989; 58(5):911-21. [DOI:10.1016/0092-8674(89)90943-4] [PMID]

Stancovski I, Schindler D, Waks T, Yarden Y, Sela M, Eshhar Z. Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol. 1993; 151(11):6577-82. [PMID]

Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016; 16(9):566-81. [DOI:10.1038/nrc.2016.97] [PMID] [PMCID]

Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016; 13(6):370-83. [DOI:10.1038/nrclinonc.2016.36] [PMID] [PMCID]

Nair R, Neelapu SS. The promise of CAR T-cell therapy in aggressive B-cell lymphoma. Best Pract Res Clin Haematol. 2018; 31(3):293-8. [DOI:10.1016/j.beha.2018.07.011] [PMID] [PMCID]

Ramos CA, Heslop HE, Brenner MK. CAR-T cell therapy

for lymphoma. Annu Rev Med. 2016; 67:165-83. [DOI:10.1146/annurev-med-051914-021702] [PMID] [PMCID]

Sommermeyer D, Hill T, Shamah SM, Salter AI, Chen Y, Mohler KM, et al. Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia.

; 31(10):2191-9. [DOI:10.1038/leu.2017.57] [PMID] [PMCID]

Burns WR, Zhao Y, Frankel TL, Hinrichs CS, Zheng Z, Xu H, et al. A high molecular weight melanoma-associated antigen–specific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer Res. 2010; 70(8):3027-33. [DOI:10.1158/0008-5472.CAN-09-2824] [PMID] [PMCID]

Huston JS, Levinson D, Mudgett-Hunter M, Tai M-S, Novotný J, Margolies MN, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988; 85(16):5879-83. [DOI:10.1073/pnas.85.16.5879] [PMID] [PMCID]

Argos P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol. 1990; 211(4):943-58. [DOI:10.1016/0022-2836(90)90085-Z] [PMID]

Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69. [DOI:10.1016/j.addr.2012.09.039] [PMID] [PMCID]

Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O'Neill A, et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother.

; 28(3):203-11. [DOI:10.1097/01.cji.0000161397.96582.59] [PMID]

James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Till BG, et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the

cell membrane. J Immunol. 2008; 180(10):7028-38. [DOI:10.4049/jimmunol.180.10.7028] [PMID] [PMCID]

Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor.

J Immunol. 2008; 180(7):4901-9. [DOI:10.4049/ jimmunol.180.7.4901] [PMID]

Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res.

; 3(2):125-35. [DOI:10.1158/2326-6066.CIR-14-0127] [PMID] [PMCID]

Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res. 2013; 19(12):3153-64. [DOI:10.1158/1078-0432.CCR-13-0330] [PMID] [PMCID]

Hombach A, Hombach AA, Abken H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’activation and unintended initiation of an innate immune response. Gene Ther. 2010; 17(10):1206-13. [DOI:10.1038/gt.2010.91] [PMID]

Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012; 119(17):3940-50. [DOI:10.1182/blood-2011-10-387969] [PMID] [PMCID]

Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJ, Sievers SA, et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther. 2017; 25(11):2452-65. [DOI:10.1016/j.ymthe.2017.07.013] [PMID] [PMCID]

Zhang T, Wu MR, Sentman CL. An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol. 2012; 189(5):2290-9. [DOI:10.4049/jimmunol.1103495] [PMID] [PMCID]

Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009; 17(8):1453-64. [DOI:10.1038/mt.2009.83] [PMID] [PMCID]

Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A. 2009; 106(9):3360-5. [DOI:10.1073/pnas.0813101106] [PMID] [PMCID]

Guedan S, Posey Jr AD, Shaw C, Wing A, Da T, Patel PR, et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI insight. 2018; 3(1):1-17. [DOI:10.1172/jci.insight.96976] [PMID] [PMCID]

Salter AI, Ivey RG, Kennedy JJ, Voillet V, Rajan A, Alderman EJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. 2018; 11(544):1-35. [DOI:10.1126/scisignal.aat6753] [PMID] [PMCID]

Zhao Z, Condomines M, van der Stegen SJ, Perna F, Kloss CC, Gunset G, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer cell. 2015; 28(4):415-28. [DOI:10.1016/j.ccell.2015.09.004] [PMID] [PMCID]

Au R. Immunooncology: can the right chimeric antigen receptors T-cell design be made to cure all types of cancers and will it be covered? J Pharm. 2017; 2017:1-9. [DOI:10.1155/2017/7513687] [PMID] [PMCID]

Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, et al. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapyInt Rev Immunol. 2015; 34(2):154-87. [DOI:10.3109/08830185.2015.1018419] [PMID]

Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010; 24(6):1160-70. [DOI:10.1038/leu.2010.75] [PMID] [PMCID]

Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006; 12(20):6106-15. [DOI:10.1158/1078-0432.CCR-06-1183] [PMID] [PMCID]

Lamers C, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006; 24(13):20-2. [DOI:10.1200/JCO.2006.05.9964] [PMID]

Park JR, DiGiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Molecular therapy. 2007; 15(4):825-33. [DOI:10.1038/sj.mt.6300104] [PMID]

Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008; 112(6):2261-71. [DOI:10.1182/blood-2007-12-128843] [PMID] [PMCID]

Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J

Med. 2019; 380(1):45-56. [DOI:10.1056/NEJMoa1804980] [PMID]

Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019; 20(1):31-42. [DOI:10.1016/S1470-2045(18)30864-7] [PMID] [PMCID]

Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 377(26):2531-44. [DOI:10.1056/NEJMoa1707447] [PMID] [PMCID]

Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Me. 2017; 377(26):2545-54. [DOI:10.1056/NEJMoa1708566] [PMID] [PMCID]

Kersten MJ, Spanjaart AM, Thieblemont C. CD19-directed CAR T-cell therapy in B-cell NHL. Curr Opin Oncol.

; 32(5):408-17. [DOI:10.1097/CCO.0000000000000668] [PMID]

Li C, Cao W, Que Y, Wang Q, Xiao Y, Gu C, et al. A phase I study of anti‐BCMA CAR T cell therapy in relapsed/refractory multiple myeloma and plasma cell leukemia. Clin Transl Med. 2021; 11(3):1-15. [DOI:10.1002/ctm2.346] [PMID] [PMCID]

Madduri D, Berdeja JG, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. CARTITUDE-1: phase 1b/2 study of ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T cell therapy, in relapsed/refractory multiple myeloma. Blood. 2020;136:22-5. [DOI:10.1182/blood-2020-136307]

Mailankody S, Jakubowiak AJ, Htut M, Costa LJ, Lee K, Ganguly S, et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol. 2020; 38(15):8504. [DOI:10.1200/JCO.2020.38.1]

Lin Y, Raje NS, Berdeja JG, Siegel DS, Jagannath S, Madduri D, et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: updated results from phase 1 CRB-401 study. Blood. 2020; 136:26-7. [DOI:10.1182/blood-2020-134324]

Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019; 380(18):1726-37. [DOI:10.1056/NEJMoa1817226] [PMID] [PMCID]

Chen L, Xu J, Fu Sr W, Jin S, Yang S, Yan S, et al. Updated phase 1 results of a first-in-human open-label study of Lcar-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (Bcma). Blood. 2019: 134(1);1858. [DOI:10.1182/blood-2019-130008]

Mailankody S, Htut M, Lee KP, Bensinger W, Devries T, Piasecki J, et al. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: initial proof of concept results from a phase 1/2 multicenter study (EVOLVE). Blood. 2018; 132:1-3. [DOI: 10.1182/blood-2018-99-113548]

Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018; 11(1):1-8. [DOI:10.1186/s13045-018-0681-6] [PMID] [PMCID]

Shah BD, Bishop MR, Oluwole OO, Logan AC, Baer MR, Donnellan WB, et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood. 2021; 138(1):11-22. [DOI:10.1182/blood.2020009098] [PMID]

Zhou X, Tu S, Wang C, Huang R, Deng L, Song C, et al. Phase I trial of fourth-generation anti-CD19 chimeric antigen receptor T cells against relapsed or refractory B cell non-Hodgkin lymphomas. Front Immunol. 2020; 11:1-12. [DOI:10.3389/fimmu.2020.564099] [PMID] [PMCID]

Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020; 382(14):1331-42. [DOI:10.1056/NEJMoa1914347] [PMID] [PMCID]

Wang ML, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19, an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in patients (Pts) with relapsed/refractory (R/R) mantle cell lymphoma (MCL): results of the phase 2 ZUMA-2 study. Biol Blood Marrow Transplant. 2020; 26(3):1-3. [DOI:1016/j.bbmt. 2019.12.135]

Siddiqi T, Soumerai JD, Dorritie KA, Stephens DM, Riedell PA, Arnason JE, et al. Rapid undetectable MRD (uMRD) responses in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) treated with lisocabtagene maraleucel (liso-cel), a CD19-directed CAR T cell product: updated results from transcend CLL 004, a phase 1/2 study including patients with high-risk disease previously treated with ibrutinib. Blood. 2019; 134(1):1-4. [DOI:10.1182/blood-2019-127603]

Yan ZX, Li L, Wang W, OuYang BS, Cheng S, Wang L, et al. Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-CD19 chimeric antigen receptor T cells in refractory B-cell non-Hodgkin's lymphoma. Clin Cancer Res. 2019; 25(23):6995-7003. [DOI:10.1158/1078-0432.CCR-19-0101] [PMID]

Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol The. 2017; 25(1):285-95. [DOI:10.1016/j.ymthe.2016.10.020] [PMID] [PMCID].

Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015; 385(9967):517-28. [DOI:10.1016/S0140-6736(14)61403-3] [PMID] [PMCID]

Zhang WY, Wang Y, Guo YL, Dai HR, Yang QM, Zhang YJ, et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal Transduct Target Ther. 2016; 1(1):1-9. [DOI:10.1038/sigtrans.2016.2] [PMID]

Shah NN, Highfill SL, Shalabi H, Yates B, Jin J, Wolters PL, et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J Clin Oncol.

; 38(17):1938-50. [DOI:10.1200/JCO.19.03279] [PMID] [PMCID]

Ramos CA, Grover NS, Beaven AW, Lulla PD, Wu MF, Ivanova A, et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol. 2020; 38(32):3794-3804. [DOI:10.1200/JCO.20.01342] [PMID] [PMCID]

Wang CM, Wu ZQ, Wang Y, Guo YL, Dai HR, Wang XH, et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res. 2017; 23(5):1156-66. [DOI:10.1158/1078-0432.CCR-16-1365] [PMID]

Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014; 6(224):1-23. [DOI:10.1126/scitranslmed.3008226] [PMID] [PMCID]

Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology. 2018; 7(7):1-13. [DOI:10.1080/2162402X.2018.1440169] [PMID] [PMCID]

Liu S, Deng B, Yin Z, Lin Y, An L, Liu D, et al. Combination of CD19 and CD22 CAR‐T cell therapy in relapsed B‐cell acute lymphoblastic leukemia after allogeneic transplantation. Am J Hematol. 2021; 96(6):671-9. [DOI:10.1002/ajh.26160] [PMID]

Cordoba S, Onuoha S, Thomas S, Pignataro DS, Hough R, Ghorashian S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021: 27(10):1797-1805. [DOI:10.1038/s41591-021-01497-1] [PMID] [PMCID]

Tong C, Zhang Y, Liu Y, Ji X, Zhang W, Guo Y, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood.

; 136(14):1632-44. [DOI:10.1182/blood.2020005278] [PMID] [PMCID]

Sang W, Shi M, Yang J, Cao J, Xu L, Yan D, et al. Phase II trial of co‐administration of CD19‐and CD20‐targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma. Cancer Med. 2020; 9(16):5827-38. [DOI:10.1002/cam4.3259] [PMID] [PMCID]

Yan Z, Cao J, Cheng H, Qiao J, Zhang H, Wang Y, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. The Lancet Haematol. 2019; 6(10):521-9. [DOI:10.1016/S2352-3026(19)30115-2] [PMID]

Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, Chu W, et al. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol. 2021: 147(12):3725-34. [DOI:10.1007/s00432-021-03613-7] [PMID]

Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: Results of phase I Trials. Clin Cancer Res. 2020; 26(15):3979-89. [DOI:10.1158/1078-0432.CCR-19-3259] [PMID]

Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, et al. Phase I study of chimeric antigen receptor–modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res. 2018; 24(6):1277-86. [DOI:10.1158/1078-0432.CCR-17-0432] [PMID]

Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology. 2018; 155(1):29-32. [DOI:10.1053/j.gastro.2018.03.029] [PMID] [PMCID]

Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol The. 2017; 25(5):1248-8. [DOI:10.1016/j.ymthe.2017.03.010] [PMID] [PMCID]

Junghans RP, Ma Q, Rathore R, Gomes EM, Bais AJ, Lo AS, et al. Phase I trial of anti‐PSMA designer CAR‐T cells in prostate cancer: possible role for interacting interleukin 2‐T cell pharmacodynamics as a determinant of clinical response. Prostate. 2016; 76(14):1257-70. [DOI:10.1002/ pros.23214] [PMID]

Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients

with neuroblastoma. Blood. 2011; 118(23):6050-6. [DOI:10.1182/blood-2011-05-354449] [PMID] [PMCID]

Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. Am Soc Clin Oncol Educ Book. 2019; 39:433-44. [DOI:10.1200/EDBK_238691] [PMID]

Al-Juhaishi T, Ahmed S. Selecting the Optimal CAR-T for the Treatment of B-Cell Malignancies. Curr Hematol Malig Rep. 2021; 16(1):32-9. [DOI:10.1007/s11899-021-00615-7] [PMID]

Titov A, Petukhov A, Staliarova A, Motorin D, Bulatov E, Shuvalov O, et al. The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death Dis. 2018; 9(9):1-15. [DOI:10.1038/s41419-018-0918-x] [PMID] [PMCID]

Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nature reviews Clinical oncology. 2018;15(1):47-62. [DOI:10.1038/nrclinonc.2017.148]

Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016; 6(6):664-79. [DOI:10.1158/2159-8290.CD-16-0040] [PMID] [PMCID]

Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med.

; 7(303):1-25. [DOI:10.1126/scitranslmed.aac5415] [PMID] [PMCID]

Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019; 25(4):625-38. [DOI:10.1016/j.bbmt.2018.12.758] [PMID]

Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018; 24(1):20-8. [DOI:10.1038/nm.4441] [PMID] [PMCID]

Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018; 36(22):2267-80. [DOI:10.1200/JCO.2018.77.8084] [PMID] [PMCID]

Garfall AL, Lancaster E, Stadtmauer EA, Lacey SF, Dengel K, Ambrose DE, et al. Posterior reversible encephalopathy syndrome (PRES) after infusion of anti-BCMA CAR T cells (CART-BCMA) for multiple myeloma: successful treatment with cyclophosphamide. Blood. 2016; 128(22):1-4. [DOI:10.1182/blood.V128.22.5702.5702]

Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ, et al. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of

multiple myeloma. Blood. 2016; 128(13):1688-700. [DOI:10.1182/blood-2016-04-711903] [PMID] [PMCID]

Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018; 8(8):958-71. [DOI:10.1158/2159-8290.CD-17-1319] [PMID] [PMCID]

Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017; 7(12):1404-19. [DOI:10.1158/2159-8290.CD-17-0698] [PMID] [PMCID]

Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016; 127(26):3321-30. [DOI:10.1182/blood-2016-04-703751]

Hu Y, Sun J, Wu Z, Yu J, Cui Q, Pu C, et al. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol. 2016; 9(1):1-5. [DOI:10.1186/s13045-016-0299-5] [PMID] [PMCID]

Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N

Engl J Med. 2018; 378(5):439-48. [DOI:10.1056/ NEJMoa1709866] [PMID] [PMCID]

Ruella M, Maus MV. Catch me if you can: Leukemia Escape after CD19-Directed T Cell Immunotherapies. Comput Struct Biotechnol J. 2016; 14:357-62. [DOI:10.1016 /j.csbj.2016.09.003] [PMID] [PMCID]

Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov. 2018; 8(10):1219-26. [DOI:10.1158/2159-8290.CD-18-0442] [PMID]

Xu X, Sun Q, Liang X, Chen Z, Zhang X, Zhou X, et al. Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol. 2019; 10:1-15. [DOI:10.3389/fimmu.2019.02664] [PMID] [PMCID]

Gardner R, Finney O, Smithers H, Leger K, Annesley C, Summers C, et al. CD19CAR T cell products of defined CD4: CD8 composition and transgene expression show prolonged persistence and durable MRD-negative remission in pediatric and young

adult B-cell ALL. Blood. 2016; 128(22):1-3. [DOI:10.1182/BLOOD.V128.22.219.219]

Majzner RG, Heitzeneder S, Mackall CL. Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer cell. 2017;

(4):476-85. [DOI:10.1016/j.ccell.2017.03.002] [PMID]

Zhang Z, Chen X, Tian Y, Li F. Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR-T cell therapy. J Immunother Cancer. 2020; 8(2):1-11. [DOI:10.1136/jitc-2020-001150] [PMID] [PMCID]

Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR–T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016; 126(6):2123-38. [DOI:10.1172/JCI85309] [PMID] [PMCID]

Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016; 127(20):2406-10. [DOI:10.1182/blood-2015-08-665547] [PMID] [PMCID]

Tahmasebi S, Elahi R, Khosh E, Esmaeilzadeh A. Programmable and multi-targeted CARs: a new breakthrough in cancer CAR-T cell therapy. Clin Transl Oncol. 2021; 23(6):1003-19. [DOI:10.1007/s12094-020-02490-9] [PMID]

Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol. 2019; 12(1):1-9. [DOI:10.1186/s13045-019-0758-x] [PMID] [PMCID]

Han X, Wang Y, Wei J, Han W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J Hematol Oncol. 2019; 12(1):1-10. [DOI:10.1186/s13045-019-0813-7]

Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016; 4(6):498-508. [DOI:10.1158/2326-6066.CIR-15-0231] [PMID] [PMCID]

Lee L, Draper B, Chaplin N, Philip B, Chin M, Galas-Filipowicz D, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood. 2018; 131(7):746-58. [DOI:10.1182/blood-2017-05-781351] [PMID] [PMCID]

Wilkins O, Keeler AM, Flotte TR. CAR T-Cell Therapy: Progress and Prospects. Hum Gene Ther Methods. 2017; 28(2):61-6. [DOI:10.1089/hgtb.2016.153] [PMID] [PMCID]

Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T Cell Therapy beyond Oncology: Autoimmune Diseases and Viral Infections. Biomedicines. 2021; 9(1):1-13. [DOI:10.3390/biomedicines9010059] [PMID] [PMCID]

  • Abstract Viewed: 104 times
  • PDF Downloaded: 62 times
  • MP3 Downloaded: 0 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Information
  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

Address: P.O. Box: 19395-4618, Darband St., Qods Sq.,Tehran, Iran.

Tel: +98-21-22707346

eISSN: 2783-1264

 Archives of Advances in Biosciences is an open access article under the terms of the Creative Commons Attribution -NonCommercial 4.0 International License.( CC BY-NC 4.0)

 

The template of this website is designed by Sinaweb