• Logo
  • SBMUJournals

Acidophilus Milk Shelf-life Prolongation by the Use of Cold Sensitive Mutants of Lactobacillus acidophilus MDC 9626

Alireza Goodarzi, Hrachya Hovhannisyan, Gohar Grigoryan, Andranik Barseghyan
1062

Views

PDF

Abstract

 

Background and Objective: The shelf-life of Acidophilus milk fermented by probiotic culture Lactobacillus acidophilus is limited due to acidification caused by continued organic acid formation at low temperatures. Increasing of titrable acidity in turn causes reducing of the total viable count of probiotic bacteria. To overcome acidification we suggested to use coldsensitive mutants of Lactobacillus acidophilus, with limited metabolism at low temperatures. In order to facilitate the selection of cold sensitive mutants, it was decided to use Rifampicin and Streotomycin mutations affecting thermostability of the key molecules of cell metabolism the RNA polymerase and ribosome, respectively.

Material and Methods: Ultra violet mutagenesis was used to enhance the yield and diversity of rifampicin and streptomycin resistant mutants of Lactobacillus acidophilus. To perform negative selection of cold sensitive mutants, antibiotic resistant colonies replica plated and incubated at 23ºC. The growth rate, milk fermenting rate, titratable acidity were measured.

Results and Conclusion: Among tested resistant to either rifampicin or streptomycin clones with frequency mean of 1.0 %, ten mutants were isolated which have lost the ability to grow at minimal temperature. Fermented with cold-sensitive mutants of Lactobacillus acidophilus milks, during storage in the refrigerator, almost twice as long retained high amount of probiotic bacteria and low titratable acidity as compared to the parent strain. Thus, direct relationship between temperature sensitivity of the starter and shelf life of acidophilic milk was confirmed. Rifampicin and Streptomycin resistant mutations are powerful tools for selection of cold-sensitive dairy starters for preparing dairy fermented products with long shelf-life.

Conflict of interest: The authors declare no conflict of interest.


Keywords

▪ Lactobacillus acidophilus ▪ Shelf life ▪ Cold sensitive mutants ▪ Rifampicin and streptomycin resistant mutants

References

Adams MR. Safety of industrial lactic bacteria. J Biotechnology. 1999; 68: 171-178. https://doi.org/10.1016/S0168-1656(98)00198-9.

Jamuna M. Jeevaratnam K. Isolation and characterization of lactobacilli from some traditional fermented foods and evaluation of the bactericoins. J Gen Appl Microbiol. 2004; 50: 79-90. http://doi.org/10.2323/jgam.50.79.

Fioramonti J, Theodorou V, Bueno L. Probiotics. What Are They? What Are Their Effects on Gut Physiology? Best Practice & Research Clinical Gastroenterology. 2003; 17(5): 711-724. http://dx.doi.org/10.1016/S1521-6918(03)00075-1.

Singh K, Kallali B, Kumar A, Thaker V. Probiotics: A Review. Asian Pacific Journal of Tropical Biomedicine. 2011; 1(2): S287-S290. https://doi.org/10.1016/S2221-1691(11)60174-3.

Gibson GR, Roberfroid MB. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J Nutr. 1995; 125: 1401–1412.

Ouwehand AC, Salminen S, Isolauri E. Probiotics, an overview of beneficial effects. Antonie van Leeuwenhoek. 2002; 82: 279–289. DOI: 10.1023/A:1020620607611.

Reid G. The scientific basis for probiotic strains of Lactobacillus. Appl. Environ. Microbiol. 1999; 65: 3763–3766.

Reid G, Sanders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R, Roberfroid M, Rowland I, Cherbut C, Klaenhammer TR. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol. 2003; 37: 105–118. DOI: 10.1097/00004836-200308000-00004.

Pena JA, Rogers AB, Ge Z, Ng V, Li SY, Fox JG, Versalovic J. Probiotic Lactobacillus spp. diminish Helicobacter hepaticus-induced inflammatory bowel disease in interleukin-10-deficient mice. Infect Immun. 2005; 73: 912–920. DOI:

1128/IAI.73.2.912-920.2005.

Vitini E, Alvarez S, Medina M, Medici M, De Budeguer MV, Perdigon G. Gut mucosal immunostimulation by lactic acid bacteria. Biocell. 2000; 24: 223–232.

Maragkoudakis PA, Miaris C, Rojez P, Manalis N, Magkanari F, Kalantzopoulos G, Tsakalidou E. Production of Traditional Greek Yoghurt Using Lactobacillus Strains with Probiotic Potential as Starter Adjuncts. International Dairy Journal. 2006; 16(1): 52- 60. http://dx.doi.org/10.1016/j.idairyj.2004.12.013.

Olson NF. The Impact of Lactic Acid Bacteria on Cheese Flavor. FEMS Microbiology Reviews. 1990; 87(1-2): 131-148. http://dx.doi.org/10.1111/j.1574-6968.1990.tb04884.x.

Urbach G. Contribution of Lactic Acid Bacteria to Flavour Compound Formation in Dairy Products. International Dairy Journal. 1995; 5(8): 877-903. http://dx.doi.org/10.1016/0958-6946(95)00037-2.

Liu SN, Han Y, Zhou ZJ. Lactic Acid Bacteria in Traditional Fermented Chinese Foods. Food Research International. 2011; 44(3): 643-651. http://dx.doi.org/10.1016/j.foodres.2010.12.034.

Panesar PS. Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food and Nutrition Sciences. 2011; 2(1): 47-51. http://dx.doi.org/10.4236/fns.2011.21006.

Sharma R, Sanodiya BS, Bagrodia D, Pandey M, Sharma A, Bisen PS. Efficacy and Potential of Lactic Acid Bacteria Modulating Human Health. International Journal of Pharma and Bio Sciences. 2012; 3(4): 935-948.

Steele J, Broadbent J, Kok J. Perspective on the Contribution of Lactic Acid Bacteria to Cheese Flavor Development. Current Opinion in Biotechnology. 2013; 24(2): 135-141. http://dx.doi.org/10.1016/j.copbio.2012.12.001.

Ali A A, Beneficial Role of Lactic Acid Bacteria in Food Preservation and Human Health. Research Journal of Microbiology. 2010; 5(12): 1213-1221. http://dx.doi.org/10.3923/jm.2010.1213.1221.

Griffiths MW, Tellez A. M. Lactobacillus helveticus: The Proteolytic System. Frontiers in Microbiology. 2013; 4: 1-9. http://dx.doi.org/10.3389/fmicb.2013.00030.

Bachmann H, Fischlechner M, Rabbers I, Barfa N, dos Santos FB, Molenaar D, Teusink B. Availability of public goods shapes the evolution of competing metabolic strategies. Proc Nat Acad Sci USA. 2013; 110(35): 14302-14307. doi: 10.1073/pnas.1308523110.

Shah NP. Functional Cultures and Health Benefits. International Dairy Journal. 2007; 17(11): 1262-1277. http://dx.doi.org/10.1016/j.idairyj.2007.01.014.0.

Balciunas EM, Martinez FAC, Todorov SD, de Melo Franco BDG, Converti A, de Souza Oliveira RP. Novel Biotechnological Applications of Bacteriocins: A Review. Food Control. 2013; 32(1): 134-142. http://dx.doi.org/10.1016/j.foodcont.2012.11.025.

Donkor ON, Henriksson A, Vasiljevic T, Shah NP. Effect of acidification on the activity of probiotics in yoghurt during cold storage. International Dairy Journal. 2006; 16: 1181-1189. https://doi.org/10.1016/j.idairyj.2005.10.008.

Vasiljevic T, Shah NP. Probiotics—From Metchnikoff to Bioactives. International Dairy Journal. 2008; 18(7): 714-728. http://dx.doi.org/10.1016/j.idairyj.2008.03.004.

Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM. Recent Advances in Cheese Microbiology. International Dairy Journal. 2001; 11(4): 259-274. http://dx.doi.org/10.1016/S0958-6946(01)00056-5.

Cogan TM, Beresford TP, Steele J, Broadbent J, Shah NP, Ustunol Z. Advances in starter cultures and cultured foods. The Journal of Dairy Science. 2007; 90(9): 4005-4021. https://doi.org/10.3168/jds.2006-765.

Hansen EB. Commercial bacterial starter cultures for fermented foods of the future. International Journal of Food Microbiology. 2002; 15 (78): 119-131. https://doi.org/10.1016/S0168-1605(02)00238-6.

Heller KJ. Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr. 2001; 73(2): 374S-379.

Beal C, Skokanova J, Latrille E, Martin N, Corrieu G. Combined effects of culture conditions and storage time on acidification and viscosity of stirred yoghurt. Journal of Dairy Science. 1999; 82(4): 673-781. http://dx.doi.org/10.3168/jds.S0022-0302(99)75283-5.

Derkx PF, Janzen T, Sørensen KI, Christensen JE, Lauridsen BS, Johansen E. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microbial Cell Factories. 2014; 13(1): 5-13. DOI: 10.1186/1475-2859-13-S1-S5.

Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie. 1988; 70: 337-349. https://doi.org/10.1016/0300-9084(88)90206-4.

Lengeler JW, Drews G, Schlegel HG. Biology of the Prokaryotes. Georg Thieme Verlag. 1999: 955.

MacLean CR, Torres-Barceló C, Moxon R. Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nature Reviews Genetics. 2013; 14: 221-227. doi:10.1038/nrg3415.

Siezen RJ, Bachmann H. Genomics of dairy fermentations. Microbial Biotechnology. 2008; 1(6): 435-442. doi: 10.1111/j.1751-7915.2008.00067.x.

Hovhannisyan H, Grigoryan G. Evolution of adhesive and aggregative properties of lactic acid bacteria, isolated from healthy Armenian women vagina. Int J Med Pharm Sci. 2015; 6(3): 1-4.

Vaningelgem F, Zamfir M., Adriany T, Vuyst De L. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus Thermophilus ST 111 in milk-based medium. J. Appl. Microbiol. 2004; 97(6): 1257-1273. DOI:

1111/j.1365-2672.2004.02418.x.

Goodarzi A. UV—Induced Mutagenesis in Lactic Acid Bacteria. International Journal of Genetics and Genomics. 2016; 4 (1): 1-4. doi: 10.11648/j.ijgg.20160401.11.

Aroya SB, Pan X, Boeke JD, Hieter P. Making Temperature-Sensitive Mutants. Methods Enzymol. 2010; 470: 181–204. doi: 10.1016/S0076-6879(10)70008-2.

Junaid M, Javed I, Abdullah M, Gulzar M, Younas U, Nasir J. Ahmad N. Development and Quality Assessment Of Flavored Probiotic acidophilus Milk. The Journal of Animal & Plant Sciences. 2013; 23(5): 1342-1346.

Shafiee G, Mortazavian AM, Mohammadifar MA, Koushki MR, Mohammadi A, Mohammadi R. Combined effects of dry matter content, incubation temperature and final pH of fermentation on biochemical and microbiological characteristics of probiotic fermented milk. African Journal of Microbiology Research. 2010; 4(12): 1265-1274.

Couturier M, Desmet L, Thomas R. High pleiotropy of streptomycin mutations in Escherichia coli. Biochemical and Biophysical Research Communications. 1964; 16(3): 244-248. https://doi.org/10.1016/0006-291X(64)90333-X.

Gorini L, Kataja E. Phenotypic repair by streptomycin of defective genotypes in E. coli. Proceedings of the National Academy of Sciences of USA. 1964; 51: 487-493.

Gorini L, Jacoby GA, Breckenridge L. Ribosomal Ambiguity. Cold Spring Harbor Symposia on Quantitative Biology. 1966; 31: 657-664.

Hovhannisyan HG, Barseghyan AA, Grigoryan NG, Topchyan AV. Genetic improvement of technological characteristics of startars for fermented milk products. Applied Biochemistry and Microbiology. 2010; 46(4): 395-399. DOI: 10.1134/S0003683810040058.

Ruusala T, Kurland CG. Streptomycin preferentially perturbs ribosomal proofreading. Molecular Genetics and Genomics. 1984; 198: 100-104. DOI: 10.1007/BF00328707.

Zengel JM, Young R, Dennis PP, Nomura M. Role of sibosomal protein S12 in peptide chain elongation: Analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli. Journal of Bacteriology. 1977; 129(3): 1320-1329.




DOI: https://doi.org/10.22037/afb.v4i4.17116

Refbacks

  • There are currently no refbacks.