Application of Phage Display in Medicine and Pharmaceuticals Phage display technology in medicine and pharmaceuticals
Trends in Peptide and Protein Sciences,
Vol. 9 No. 1 (2024),
31 January 2024
,
Page 1-8 (e4)
https://doi.org/10.22037/tpps.v9i1.46894
Abstract
Research in medical sciences is vital for improving human health. Timely and accurate disease diagnosis is crucial for effective treatment and public health. Antigens and antibodies are essential for diagnostic testing, making their recombinant production important. Monoclonal antibodies have traditionally been produced using laboratory animals, but this method faces challenges, including the development of anti-mouse human antibodies. Phage display, a revolutionary technique that emerged in the 1980s, allows for the production of antibodies without laboratory animals, eliminating related concerns and enabling the selection of antibodies with optimal affinity for antigens. Phage display has numerous applications in medicine and pharmaceuticals. It aids in the development of therapeutic antibodies for cancer, autoimmune disorders, and infectious diseases. By screening large libraries of antibodies quickly, researchers can identify effective treatment candidates. Additionally, phage display assists in vaccine development by identifying epitopes—specific parts of antigens recognized by the immune system—and plays a role in targeted drug delivery systems. This review emphasizes the transformative potential of phage display in diagnostics and therapeutics, highlighting its role in advancing health outcomes for all.
HIGHLIGHTS
- Phage display allows for the production of antibodies without the use of laboratory animals.
- Phage display is used in developing therapeutic and vaccine design by identifying key epitopes.
- Phage display technology utilizes various bacteriophages, including M13, fd, f1, T7, T4, and lambda (λ).
- Bacteriophages
- Monoclonal antibody
- Phage type
- Phage display

How to Cite
References
Aghebati-Maleki, L., Bakhshinejad, B., Baradaran, B., Motallebnezhad, M., Aghebati-Maleki, A., Nickho, H., Yousefi, M. and J. Majidi, (2016). ″Phage display as a promising approach for vaccine development.″ Journal of Biomedical Science, 23(1): 66. DOI: https://doi.org/10.1186/s12929-016-0285-9.
Alfaleh, M. A., Alsaab, H. O., Mahmoud, A. B., Alkayyal, A. A., Jones, M. L., Mahler, S. M. and A. M. Hashem, (2020). ″Phage display derived monoclonal antibodies: from bench to bedside.″ Frontiers in Immunology, 11: 1986. DOI: https://doi.org/10.3389/fimmu.2020.01986.
Bakhshi Mofrad Kashani, A., Asalani Mehr, M. and P. Abedi Elkhichi, (2021). ″Challenges of laboratory sampling and diagnosis of sars-cov-2 virus of disease (covid-19).″ Studies in Medical Sciences, 32(3): 156-174.
Beghetto, E. and N. Gargano, (2011). ″Lambda-Display: a powerful tool for antigen discovery.″ Molecules, 16(4): 3089-3105. DOI: https://doi.org/10.3390/molecules16043089.
Deng, X., Wang, L., You, X., Dai, P. and Y. Zeng, (2018). ″Advances in the T7 phage display system (Review).″ Molecular Medicine Reports, 17(1): 714-720. DOI: https://doi.org/10.3892/mmr.2017.7994.
Farajpour, Z., Rahbarizadeh, F., Kazemi, B. and D. Ahmadvand, (2014). ″A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment.″ Biochemical and Biophysical Research Communications, 446(1): 132-136. DOI: https://doi.org/10.1016/j.bbrc.2014.02.069.
Farajpour, Z., Rahbarizadeh, F., Kazemi, B., Ahmadvand, D. and M. Mohaghegh, (2013). ″Identification and in vitro characterization of phage-displayed VHHs targeting VEGF.″ Journal of Biomolecular Screening, 19(4): 547-555. DOI: https://doi.org/10.1177/1087057113514275.
Frei, J. C. and J. R. Lai, (2016). ″Chapter three - protein and antibody engineering by phage display.″ In: Pecoraro, V. L., (ed.) Methods in Enzymology, Vol. 580, Academic Press. pp. 45-87. DOI: https://doi.org/10.1016/bs.mie.2016.05.005.
Gamkrelidze, M. and K. Dąbrowska, (2014). ″T4 bacteriophage as a phage display platform.″ Archives of Microbiology, 196(7): 473-479. DOI: https://doi.org/10.1007/s00203-014-0989-8.
Hamzeh-Mivehroud, M., Alizadeh, A. A., Morris, M. B., Bret Church, W. and S. Dastmalchi, (2013). ″Phage display as a technology delivering on the promise of peptide drug discovery.″ Drug Discovery Today, 18(23): 1144-1157. DOI: https://doi.org/10.1016/j.drudis.2013.09.001.
Hashemi, H., Pouyanfard, S., Bandehpour, M., Noroozbabaei, Z., Kazemi, B., Saelens, X. and T. Mokhtari-Azad, (2012). ″Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza A virus challenge.″ PloS One, 7(9): e45765. DOI: https://doi.org/10.1371/journal.pone.0045765.
Hnasko, R. M. and L. H. Stanker, (2015). ″Hybridoma technology.″ In: Hnasko, R. (ed.) ELISA: Methods and Protocols, New York, NY: Springer New York. pp. 15-28. DOI: https://doi.org/10.1007/978-1-4939-2742-5_2.
Hutchings, C. J. and A. K. Sato, (2024). ″Phage display technology and its impact in the discovery of novel protein-based drugs.″ Expert Opinion on Drug Discovery, 19(8): 887-915. DOI: https://doi.org/10.1080/17460441.2024.2367023.
Hyde-DeRuyscher, R., Paige, L. A., Christensen, D. J., Hyde-DeRuyscher, N., Lim, A., Fredericks, Z. L., Kranz, J., Gallant, P., Zhang, J., Rocklage, S. M., Fowlkes, D. M., Wendler, P. A. and P. T. Hamilton, (2000). ″Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries.″ Chemistry and Biology, 7(1): 17-25. DOI: https://doi.org/10.1016/s1074-5521(00)00062-4.
Jahandar-Lashaki, S., Farajnia, S., Faraji-Barhagh, A., Hosseini, Z., Bakhtiyari, N. and L. Rahbarnia, (2024). ″Phage display as a medium for target therapy based drug discovery, review and update.″ Molecular Biotechnology, In press. DOI: https://doi.org/10.1007/s12033-024-01195-6.
Jaroszewicz, W., Morcinek-Orłowska, J., Pierzynowska, K., Gaffke, L. and G. Węgrzyn, (2022). ″Phage display and other peptide display technologies.″ FEMS Microbiology Reviews, 46(2): fuab052. DOI: https://doi.org/10.1093/femsre/fuab052.
Jo, S. J., Kwon, J., Kim, S. G. and Lee, S. J. (2023) ″The biotechnological application of bacteriophages: what to do and where to go in the middle of the post-antibiotic era.″ Microorganisms, 11(9): 2311. DOI: https://doi.org/10.3390/microorganisms11092311.
Kalt, D.A. (2019). ″A retrospective analysis of corrected laboratory results in a large academic medical center.″ American Journal of Clinical Pathology, 152(2): 200-206. DOI: https://doi.org/10.1093/ajcp/aqz036.
Köhler, G., Howe, S. C. and C. Milstein, (1976). ″Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines.″ European Journal of Immunology, 6(4): 292-295. DOI: https://doi.org/10.1002/eji.1830060411.
Köhler, G. and C. Milstein, (1975). ″Continuous cultures of fused cells secreting antibody of predefined specificity.″ Nature, 256(5517): 495-497. DOI: https://doi.org/10.1038/256495a0.
Ledsgaard, L., Kilstrup, M., Karatt-Vellatt, A., McCafferty, J. and A.H. Laustsen, (2018). ″Basics of antibody phage display technology.″ Toxins (Basel), 10(6): 236. DOI: https://doi.org/10.3390/toxins10060236.
Lu, R.-M., Hwang, Y.-C., Liu, I. J., Lee, C.-C., Tsai, H.-Z., Li, H.-J. and H.-C. Wu, (2020). ″Development of therapeutic antibodies for the treatment of diseases.″ Journal of Biomedical Science, 27(1): 1. DOI: https://doi.org/10.1186/s12929-019-0592-z.
Merkuleva, Y.A., Shcherbakov, D.N. and A.A. Ilyichev, (2022). ″Methods to produce monoclonal antibodies for the prevention and treatment of viral infections.″ Russian Journal of Bioorganic Chemistry, 48(2): 256-272. DOI: https://doi.org/10.1134/S1068162022020169.
Mirick, G., Bradt, B., Denardo, S. and G. Denardo, (2004). ″A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words.″ The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 48(4): 251. PMID: 15640788.
Mitra, S. and P.C. Tomar, (2021). ″Hybridoma technology; advancements, clinical significance, and future aspects.″ Journal of Genetic Engineering and Biotechnology, 19(1): 159. DOI: https://doi.org/10.1186/s43141-021-00264-6.
Moreira, G., Fühner, V. and M. Hust, (2018). ″Epitope mapping by phage display.″ In: Hust, M. and T. Lim, (Eds), Phage Display. Methods in Molecular Biology, Vol 1701. Humana Press, New York, NY, pp. 497-518. DOI: https://doi.org/10.1007/978-1-4939-7447-4_28.
Mustafa, M. I. and A. Mohammed, (2024). ″Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases.″ SLAS Discovery, 29(3): 100140. DOI: https://doi.org/10.1016/j.slasd.2024.01.001.
Nagano, K. and Y. Tsutsumi, (2021). ″Phage display technology as a powerful platform for antibody drug discovery.″ Viruses, 13(2): 178. DOI: https://doi.org/10.3390/v13020178.
Nicastro, J., Sheldon, K. and R.A. Slavcev, (2014). ″Bacteriophage lambda display systems: developments and applications.″ Applied Microbiology and Biotechnology, 98(7): 2853-2866. DOI: https://doi.org/10.1007/s00253-014-5521-1.
Omidfar, K. and M. Daneshpour, (2015). ″Advances in phage display technology for drug discovery.″ Expert Opinion on Drug Discovery, 10(6): 651-669. DOI: https://doi.org/10.1517/17460441.2015.1037738.
Parmley, S. F. and G. P. Smith, (1989). ″Filamentous fusion phage cloning vectors for the study of epitopes and design of vaccines.″ In Atassi, M. Z., (Ed.) Immunobiology of Proteins and Peptides V: Vaccines Mechanisms, Design, and Applications, Boston, MA: Springer US. pp. 215-218. DOI: https://doi.org/10.1007/978-1-4757-2046-4_21.
Parray, H. A., Shukla, S., Samal, S., Shrivastava, T., Ahmed, S., Sharma, C. and R. Kumar, (2020). ″Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives.″ International Immunopharmacology, 85: 106639. DOI: https://doi.org/10.1016/j.intimp.2020.106639.
Pierzynowska, K., Morcinek-Orłowska, J., Gaffke, L., Jaroszewicz, W., Skowron, P. M. and G. Węgrzyn, (2024). ″Applications of the phage display technology in molecular biology, biotechnology and medicine.″ Critical Reviews in Microbiology, 50(4): 450-490. DOI: https://doi.org/10.1080/1040841X.2023.2219741.
Pouyanfard, S., Bamdad, T., Hashemi, H., Bandehpour, M. and B. Kazemi, (2012). ″Induction of protective anti-CTL epitope responses against HER-2-positive breast cancer based on multivalent T7 phage nanoparticles.″ PloS One, 7(11): e49539. DOI: https://doi.org/10.1371/journal.pone.0049539.
Rahbarnia, L., Farajnia, S., Babaei, H., Majidi, J., Veisi, K., Ahmadzadeh, V. and B. Akbari, (2017). ″Evolution of phage display technology: from discovery to application.″ Journal of Drug Targeting, 25(3): 216-224. DOI: https://doi.org/10.1080/1061186X.2016.1258570.
Sadraeian, M., Maleki, R., Moraghebi, M. and A. Bahrami, (2024). ″Phage display technology in biomarker identification with emphasis on non-cancerous diseases.″ Molecules, 29(13): 3002. DOI: https://doi.org/10.3390/molecules29133002.
Sharma, P., Joshi, R. V., Pritchard, R., Xu, K. and M.A. Eicher, (2023). ″Therapeutic antibodies in medicine.″ Molecules, 28(18): 6438. DOI: https://doi.org/10.3390/molecules28186438.
Singh, R., Chandley, P. and S. Rohatgi, (2023). ″Recent advances in the development of monoclonal antibodies and next-generation antibodies.″ ImmunoHorizons, 7(12): 886-897. DOI: https://doi.org/10.4049/immunohorizons.2300102.
Singh, S., Tank, N. K., Dwiwedi, P., Charan, J., Kaur, R., Sidhu, P. and V. K. Chugh, (2018). ″Monoclonal antibodies: a review.″ Current Clinical Pharmacology, 13(2): 85-99. DOI: https://doi.org/10.2174/1574884712666170809124728.
Sioud, M. (2019). ″Phage display libraries: from binders to targeted drug delivery and human therapeutics.″ Molecular Biotechnology, 61(4): 286-303. DOI: https://doi.org/10.1007/s12033-019-00156-8.
Smith, G. P. (1985). ″Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface.″ Science, 228(4705): 1315-1317. DOI: https://doi.org/10.1126/science.4001944.
Song, B.P.C., Ch'ng, A.C.W. and T.S. Lim, (2024). ″Review of phage display: A jack-of-all-trades and master of most biomolecule display.″ International Journal of Biological Macromolecules, 256: 128455. DOI: https://doi.org/10.1016/j.ijbiomac.2023.128455.
Suzuki, M., Kato, C. and A. Kato, (2015). ″Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies.″ Journal of Toxicologic Pathology, 28(3): 133-139. DOI: https://doi.org/10.1293/tox.2015-0031.
Tikunova, N. and V. Morozova, (2009). ″Phage display on the base of filamentous bacteriophages: application for recombinant antibodies selection.″ Acta Naturae, 1(3): 20-28. PMID: 22649612.
Veggiani, G., Giabbai, B., Semrau, M. S., Medagli, B., Riccio, V., Bajc, G., Storici, P. and de A. Marco, (2020). ″Comparative analysis of fusion tags used to functionalize recombinant antibodies.″ Protein Expression and Purification, 166: 105505. DOI: https://doi.org/10.1016/j.pep.2019.105505.
Wang, Z., Wang, G., Lu, H., Li, H., Tang, M. and A. Tong, (2022). ″Development of therapeutic antibodies for the treatment of diseases.″ Molecular Biomedicine, 3(1): 35. DOI: https://doi.org/10.1186/s12929-019-0592-z.
Wu, C.-H., Liu, I. J., Lu, R.-M. and H.-C. Wu, (2016). ″Advancement and applications of peptide phage display technology in biomedical science.″ Journal of Biomedical Science, 23(1): 8. DOI: https://doi.org/10.1186/s12929-016-0223-x.
Wu, J., Tu, C., Yu, X., Zhang, M., Zhang, N., Zhao, M., Nie, W. and Z. Ren, (2007). ″Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: A powerful immunological approach.″ Journal of Virological Methods, 139(1): 50-60. DOI: https://doi.org/10.1016/j.jviromet.2006.09.017.
Zhang, X., Das, S., Dunbar, S. and Y.-W. Tang, (2020). ″Chapter Two - Molecular and non-molecular approaches to etiologic diagnosis of gastroenteritis.″ In: Makowski, G.S. (Ed.) Advances in Clinical Chemistry, Vol. 99, Elsevier. pp. 49-85. DOI: https://doi.org/10.1016/bs.acc.2020.02.007.
- Abstract Viewed: 48 times
- PDF Downloaded: 47 times