Cyanophycin as a Cyanobacterial Granule Polypeptide: Potential Sources and Applications Cyanophycin sources and applications
Trends in Peptide and Protein Sciences,
Vol. 9 No. 1 (2024),
31 Bahman 2024
,
Page 1-9 (e3)
https://doi.org/10.22037/tpps.v9i1.46884
Abstract
Cyanophycin is a distinctive biopolymer composed of a poly-aspartate backbone adorned with arginine side chains, produced by cyanobacteria and certain bacterial strains through the enzymatic activities of CphA1 and CphA2. The CphA1 enzyme engages aspartate and arginine in separate reactions, while CphA2 facilitates a more streamlined polymerization of β-Asp-Arg dipeptides, potentially enhancing its efficiency for biotechnological applications. Although cyanophycin is typically insoluble at neutral pH, it becomes soluble in highly acidic or alkaline environments, leading to the formation of large, inert granules that play essential biological roles. This biopolymer primarily acts as a storage reservoir for nitrogen, carbon, and energy, with its metabolic processes tightly regulated to enable organisms to adapt to fluctuating environmental conditions. Cyanophycin’s versatility spans multiple sectors, including biomedicine, where it shows promise as a biocompatible material for drug delivery systems and tissue engineering scaffolds. In industrial contexts, it is being investigated as a biodegradable substitute for synthetic polymers and utilized in water treatment applications due to its high viscosity. In agriculture, cyanophycin-derived dipeptides are considered potential nutritional supplements because of their excellent bioavailability. Furthermore, recent advancements in the heterologous expression of cyanophycin synthetases in various host organisms, including bacterial hosts such as E. coli, yeasts, and plants, aim to improve production yields and create hybrid materials with optimized properties. Collectively, the multifunctionality and biodegradability of cyanophycin position it as a strong candidate for diverse applications, underscoring the necessity for continued research and development to enhance its practical use and commercial feasibility. This mini-review article summarizes the cyanophycin potential sources, chemical modifications, and potential applications.
HIGHLIGHTS
- Cyanophycin is a biopolymer of a poly-aspartate with arginine side chains.
- Cyanophycin is synthesized by the enzyme cyanophycin synthetase (CphA).
- Cyanophycin is extracted from cyanobacteria and is heterologously produced in bacteria, yeasts, and plants.
- Cyanophycin has a wide range of industrial, biomedical, and cosmeceutical applications.
- Cyanophycin
- Cyanobacteria
- Polypeptide
- Biomedical application
- Chemical modification

How to Cite
References
Abd-El-Karem, Y., Elbers, T., Reichelt, R. and A. Steinbüchel, (2011). "Heterologous expression of Anabaena sp. PCC7120 cyanophycin metabolism genes cphA1 and cphB1 in Sinorhizobium (Ensifer) meliloti 1021." Applied Microbiology and Biotechnology, 89(4): 1177-1192. DOI: https://doi.org/10.1007/s00253-010-2891-x.
Aboulmagd, E., Voss, I., Oppermann-Sanio, F. B. and A. Steinbüchel, (2001). "Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria Corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida." Biomacromolecules, 2(4): 1338-1342. DOI: https://doi.org/10.1021/bm010075a.
Adelnia, H., Sirous, F., Blakey, I. and H. T. Ta, (2023). "Metal ion chelation of poly(aspartic acid): From scale inhibition to therapeutic potentials." International Journal of Biological Macromolecules, 229: 974-993. DOI: https://doi.org/10.1016/j.ijbiomac.2022.12.256.
Allen, M. M., Hutchison, F. and P. J. Weathers, (1980). "Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308." Journal of Bacteriology, 141(2): 687-693. DOI: https://doi.org/10.1128/jb.141.2.687-693.1980.
Aravind, J., Saranya, T., Sudha, G. and P. Kanmani, (2016). "A mini review on cyanophycin: Production, analysis and its applications." In: Prashanthi, M. and R. Sundaram, (eds) Integrated Waste Management in India. Environmental Science and Engineering, Springer, Cham. pp.49-58. DOI: https://doi.org/10.1007/978-3-319-27228-3_5.
Canizales, S., Sliwszcinka, M., Russo, A., Bentvelzen, S., Temmink, H., Verschoor, A. M., Wijffels, R. H. and M. Janssen, (2021). "Cyanobacterial growth and cyanophycin production with urea and ammonium as nitrogen source." Journal of Applied Phycology, 33(6): 3565-3577. DOI: https://doi.org/10.1007/s10811-021-02575-0.
Diniz, S. C., Voss, I. and A. Steinbüchel, (2006). "Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design." Biotechnology and Bioengineering, 93(4): 698-717. DOI: https://doi.org/10.1002/bit.20760.
Du, J., Li, L. and S. Zhou, (2017). "Enhanced cyanophycin production by Escherichia coli overexpressing the heterologous cphA gene from a deep sea metagenomic library." Journal of Bioscience and Bioengineering, 123(2): 239-244. DOI: https://doi.org/10.1016/j.jbiosc.2016.08.008.
Elbahloul, Y., Krehenbrink, M., Reichelt, R. and A. Steinbüchel, (2005). "Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus Strain ADP1." Applied and Environmental Microbiology, 71(2): 858-866. DOI: https://doi.org/10.1128/AEM.71.2.858-866.2005.
Elbahloul, Y. and A. Steinbüchel (2006). "Engineering the genotype of Acinetobacter sp. strain ADP1 to enhance biosynthesis of cyanophycin." Applied and Environmental Microbiology, 72(2): 1410-1419. DOI: https://doi.org/10.1128/AEM.72.2.1410-1419.2006.
Emmerling, C., Pohl, J., Lahl, K., Unger, C. and Broer, I. (2012). "Cultivation of transgenic cyanophycin-producing potatoes does not negatively affect growth, reproduction and activity of the earthworm Lumbricus terrestris (L.)." Pedobiologia, 55(3): 161-165. DOI: https://doi.org/10.1016/j.pedobi.2011.12.006.
Frey, K. M., Oppermann-Sanio, F. B., Schmidt, H. and A. Steinbüchel (2002). "Technical-scale production of cyanophycin with recombinant strains of Escherichia coli." Applied and Environmental Microbiology, 68(7): 3377-3384. DOI: https://doi.org/10.1128/AEM.68.7.3377-3384.2002.
Frommeyer, M., Bergander, K. and A. Steinbüchel, (2014). "Guanidination of soluble lysine-rich cyanophycin yields a homoarginine-containing polyamide." Applied and Environmental Microbiology, 80(8): 2381-2389. DOI: https://doi.org/10.1128/AEM.04013-13.
Frommeyer, M., Wiefel, L. and A. Steinbüchel, (2016). "Features of the biotechnologically relevant polyamide family "cyanophycins" and their biosynthesis in prokaryotes and eukaryotes." Critical Reviews in Biotechnology, 36(1): 153-164. DOI: https://doi.org/10.3109/07388551.2014.946467.
Füser, G. and A. Steinbüchel, (2005). "Investigations on the solubility behavior of cyanophycin. Solubility of cyanophycin in solutions of simple inorganic salts." Biomacromolecules, 6(3): 1367-1374. DOI: https://doi.org/10.1021/bm049371o.
Grogg, M., Hilvert, D., Beck, A. K. and D. Seebach, (2019). "Syntheses of cyanophycin segments for investigations of cell-penetration." Synthesis, 51(01): 31-39. DOI: https://doi.org/10.1055/s-0037-1610202.
Hai, T., Oppermann-Sanio, F. B. and A. Steinbüchel, (2002). "Molecular characterization of a thermostable cyanophycin synthetase from the thermophilic cyanobacterium Synechococcus sp. strain MA19 and in vitro synthesis of cyanophycin and related polyamides." Applied and Environmental Microbiology, 68(1): 93-101. DOI: https://doi.org/10.1128/AEM.68.1.93-101.2002.
Jia, B., Sun, W., Duan, W., Ma, X., Wang, Y., Zhou, C. and J. Qin, (2023). "Fully biodegradable self-healing hydrogel prepared based on poly(aspartic acid) and pectin for drug delivery and anti-tumor therapy." Journal of Polymer Research, 30(12): 453. DOI: https://doi.org/10.1007/s10965-023-03823-2.
Khlystov, N. A., Chan, W. Y., Kunjapur, A. M., Shi, W., Prather, K. L. J. and B. D. Olsen, (2017). "Material properties of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartate (cyanophycin)." Polymer, 109: 238-245. DOI: https://doi.org/10.1016/j.polymer.2016.11.058.
Könst, P. M., Scott, E. L., Franssen, M. C. R. and J. P. M. Sanders, (2011). "Acid and base catalyzed hydrolysis of cyanophycin for the biobased production of nitrogen containing chemicals." Journal of Biobased Materials and Bioenergy, 5(1): 102-108. DOI: https://doi.org/10.1166/jbmb.2011.1126.
Krzemińska, A., Kwiatos, N., Arenhart Soares, F. and A. Steinbüchel, (2022). "Theoretical studies of cyanophycin dipeptides as inhibitors of tyrosinases." International Journal of Molecular Sciences, 23(6): 3335. DOI: https://doi.org/10.3390/ijms23063335.
Kwiatos, N., Atila, D., Puchalski, M., Kumaravel, V. and A. Steinbüchel, (2024). "Cyanophycin modifications for applications in tissue scaffolding." Applied Microbiology and Biotechnology, 108(1): 264. DOI: https://doi.org/10.1007/s00253-024-13088-4.
Kwiatos, N. and A. Steinbüchel (2021). "Cyanophycin Modifications—Widening the Application Potential." Frontiers in Bioengineering and Biotechnology, 9: . DOI: https://doi.org/10.3389/fbioe.2021.763804
Liu, H., Al-Dhabi, N. A., Jiang, H., Liu, B., Qing, T., Feng, B., Ma, T., Tang, W. and P. Zhang, (2024). "Toward nitrogen recovery: Co-cultivation of microalgae and bacteria enhances the production of high-value nitrogen-rich cyanophycin." Water Research, 256: 121624. DOI: https://doi.org/10.1016/j.watres.2024.121624.
Lu, Z., Ye, J., Chen, Z., Xiao, L., Lei, L., Han, B. P. and H. W. Paerl, (2022). "Cyanophycin accumulated under nitrogen-fluctuating and high-nitrogen conditions facilitates the persistent dominance and blooms of Raphidiopsis raciborskii in tropical waters." Water Research, 214: 118215. DOI: https://doi.org/10.1016/j.watres.2022.118215.
Mackerras, A. H., De Chazal, N. M. and G. D. Smith, (1990). "Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308." Journal of General Microbiology, 136(10): 2057-2065. DOI: https://doi.org/10.1099/00221287-136-10-2057.
Markus, L. M. D., Sharon, I., Munro, K., Grogg, M., Hilvert, D., Strauss, M. and T. M. Schmeing, (2023). "Structure and function of a hexameric cyanophycin synthetase 2." Protein Science, 32(7): e4685. DOI: https://doi.org/10.1002/pro.4685.
Maslova, O. V., Senko, O. V. and E. N. Efremenko, (2018). ″Aspartic and glutamic acids polymers: preparation and applications in medicinal chemistry and pharmaceutics.″ Russian Chemical Bulletin, 67: 614-623. DOI: https://doi.org/10.1007/s11172-018-2115-6.
Najar, I. and S. Das, (2015). "Poly-glutamic acid (PGA)-Structure, synthesis, genomic organization and its application: A Review." International Journal of Pharmaceutical Sciences and Research, 6(6): 2258. DOI: https://doi.org/10.13040/IJPSR.0975-8232.6(6).2258-80.
Nausch, H., Dorn, M., Frolov, A., Hoedtke, S., Wolf, P. and I. Broer, (2020). "Direct delivery of health promoting β-Asp-Arg dipeptides via stable co-expression of cyanophycin and the cyanophycinase CphE241 in tobacco plants." Frontiers in Plant Science, 11: 842. DOI: https://doi.org/10.3389/fpls.2020.00842.
Nausch, H., Hausmann, T., Ponndorf, D., Hühns, M., Hoedtke, S., Wolf, P., Zeyner, A. and I. Broer, (2016). "Tobacco as platform for a commercial production of cyanophycin." New Biotechnology, 33(6): 842-851. DOI: https://doi.org/10.1016/j.nbt.2016.08.001.
Neubauer, K., Hühns, M., Hausmann, T., Klemke, F., Lockau, W., Kahmann, U., Pistorius, E. K., Kragl, U. and I. Broer, (2012). ″Isolation of cyanophycin from tobacco and potato plants with constitutive plastidic cphA Te gene expression.″ Journal of Biotechnology, 158(1-2): 50-58. DOI: https://doi.org/10.1016/j.jbiotec.2011.12.008.
Neumann, K., Stephan, D. P., Ziegler, K., Hühns, M., Broer, I., Lockau, W. and E. K. Pistorius, (2005). "Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants." Plant Biotechnology Journal, 3(2): 249-258. DOI: https://doi.org/10.1111/j.1467-7652.2005.00122.x.
Obst, M., Oppermann-Sanio, F. B., Luftmann, H. and A. Steinbüchel, (2002). "Isolation of cyanophycin-degrading bacteria, cloning and characterization of an extracellular cyanophycinase gene (cphE) from Pseudomonas anguilliseptica strain BI: The cphE gene from P. anguilliseptica BI encodes a cyanophycin-hydrolyzing enzyme." Journal of Biological Chemistry, 277(28): 25096-25105. DOI: https://doi.org/10.1074/jbc.M112267200.
Obst, M. and A. Steinbüchel, (2004). "Microbial degradation of poly (amino acid)s." Biomacromolecules 5(4): 1166-1176. DOI: https://doi.org/10.1021/bm049949u.
Page-Sharp, M., Behm, C. A. and G. D. Smith, (1998). "Cyanophycin and glycogen synthesis in a cyanobacterial Scytonema species in response to salt stress." FEMS Microbiology Letters, 160(1): 11-15. DOI: https://doi.org/10.1111/j.1574-6968.1998.tb12883.x.
Ponndorf, D., Ehmke, S., Walliser, B., Thoss, K., Unger, C., Görs, S., Daş, G., Metges, C. C., Broer, I. and H. Nausch, (2017). "Stable production of cyanophycinase in Nicotiana benthamiana and its functionality to hydrolyse cyanophycin in the murine intestine." Plant Biotechnology Journal, 15(5): 605-613. DOI: https://doi.org/10.1111/pbi.12658.
Sachin, K. and S. K. Karn, (2021). "Microbial fabricated nanosystems: applications in drug delivery and targeting." Frontiers in Chemistry, 9:617353. DOI: https://doi.org/10.3389/fchem.2021.617353.
Sallam, A. and A. Steinbüchel, (2008). "Anaerobic and aerobic degradation of cyanophycin by the denitrifying bacterium Pseudomonas alcaligenes strain DIP1 and role of three other coisolates in a mixed bacterial consortium." Applied and Environmental Microbiology, 74(11): 3434-3443. DOI: https://doi.org/10.1128/AEM.02575-07.
Sallam, A. and A. Steinbüchel, (2009). "Cyanophycin-degrading bacteria in digestive tracts of mammals, birds and fish and consequences for possible applications of cyanophycin and its dipeptides in nutrition and therapy." Journal of Applied Microbiology, 107(2): 474-484. DOI: https://doi.org/10.1111/j.1365-2672.2009.04221.x.
Schmidt, K., Schmidtke, J., Mast, Y., Waldvogel, E., Wohlleben, W., Klemke, F., Lockau, W., Hausmann, T., Hühns, M. and I. Broer, (2017) "Comparative statistical component analysis of transgenic, cyanophycin-producing potatoes in greenhouse and field trials." Transgenic Research, 26(4): 529-539. DOI: https://doi.org/10.1007/s11248-017-0022-5.
Sharon, I. (2022). “Structural insights into the biosynthesis and biodegradation of cyanophycin”, McGill University (Canada), Department of Biochemistry, ProQuest Dissertations & Theses, 2022: 30718245.
Sharon, I., Grogg, M., Hilvert, D. and T. M. Schmeing, (2022). "Structure and function of the β-Asp-Arg polymerase cyanophycin synthetase 2." ACS Chemical Biology, 17(3): 670-679. DOI: https://doi.org/10.1021/acschembio.1c01007.
Sharon, I., Grogg, M., Hilvert, D. and T. M. Schmeing, (2022). "The structure of cyanophycinase in complex with a cyanophycin degradation intermediate." Biochimica et Biophysica Acta - General Subjects, 1866(11): 130217. DOI: https://doi.org/10.1016/j.bbagen.2022.130217.
Sharon, I., Haque, A. S., Grogg, M., Lahiri, I., Seebach, D., Leschziner, A. E., Hilvert, D. and T. M. Schmeing, (2021). "Structures and function of the amino acid polymerase cyanophycin synthetase." Nature Chemical Biology, 17(10): 1101-1110. DOI: https://doi.org/10.1038/s41589-021-00854-y.
Sharon, I., Hilvert, D. and T. M. Schmeing, (2023). "Cyanophycin and its biosynthesis: not hot but very cool." Natural Product Reports, 40(9): 1479-1497. DOI: https://doi.org/10.1039/D2NP00092J
Sharon, I., McKay, G. A., Nguyen, D. and T. Martin Schmeing, (2023). "Discovery of cyanophycin dipeptide hydrolase enzymes suggests widespread utility of the natural biopolymer cyanophycin." Proceedings of the National Academy of Sciences of the United States of America 120(8): e2216547120. DOI: https://doi.org/10.1073/pnas.2216547120.
Solaiman, D.K.Y., Garcia, R.A., Ashby, R.D., Piazza, G.J. and A. Steinbüchel, (2011). "Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer." New Biotechnology, 28(6): 552-558. DOI: https://doi.org/10.1016/j.nbt.2011.03.025.
Steinle, A. and A. Steinbüchel, (2010). "Establishment of a simple and effective isolation method for cyanophycin from recombinant Saccharomyces cerevisiae." Applied Microbiology and Biotechnology, 85(5): 1393-1399. DOI: https://doi.org/10.1007/s00253-009-2213-3.
Steinle, A., Witthoff, S., Krause, J. P. and A. Steinbüchel, (2010). "Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases." Applied and Environmental Microbiology, 76(4): 1062-1070. DOI: https://doi.org/10.1128/AEM.01659-09.
Swain, K., Sharon, I., Blackson, W., Parrish, S., Tekel, S., Schmeing, T. M., Nielsen, D. R. and B. L. Nannenga, (2023). "Soluble and stable cyanophycin synthetase expression enhances heterologous cyanophycin production in Escherichia coli." Biochemical Engineering Journal, 195: 108916. DOI: https://doi.org/10.1016/j.bej.2023.108916.
Trentin, G., Piazza, F., Carletti, M., Zorin, B., Khozin-Goldberg, I., Bertucco, A. and E. Sforza, (2023). "Fixing N2 into cyanophycin: continuous cultivation of Nostoc sp. PCC 7120." Applied Microbiology and Biotechnology, 107(1): 97-110. DOI: https://doi.org/10.1007/s00253-022-12292-4.
Tseng, W.C., Fang, T.Y., Lin, Y.C., Huang, S.J. and Y.H. Huang, (2018). "Reversible self-assembly nanovesicle of UCST response prepared with multi-l-arginyl-poly-l-aspartate conjugated with polyethylene glycol." Biomacromolecules, 19(12): 4585-4592. DOI: https://doi.org/10.1021/acs.biomac.8b01274.
Tseng, W. C., Fang, T. Y., Cho, C. Y., Chen, P. S. and C. S. Tsai, (2012). "Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene." Biotechnology Progress, 28(2): 358-363. DOI: https://doi.org/10.1002/btpr.1513.
Tseng, W. C., Fang, T. Y., Hsieh, Y. C., Chen, C. Y. and M. C. Li, (2017). "Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli." Journal of Biotechnology, 249: 59-65. DOI: https://doi.org/10.1016/j.jbiotec.2017.04.001.
Wang, B. and J.H. Kim, (2018). "Various functional and stimuli-responsive hydrogel based on polyaspartamides." In: Hydrogels: Recent Advances. Thakur, V. and M. Thakur, (eds). Singapore, Springer, pp. 409-434. DOI: https://doi.org/10.1007/978-981-10-6077-9_15.
Watzer, B. and K. Forchhammer, (2018). "Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803." Applied and Environmental Microbiology 84(20): e01298-18. DOI: https://doi.org/10.1128/AEM.01298-18.
Watzer, B., Forchhammer, K., Rosenstiel, W. and H. Brötz-Oesterhelt (2016). "Regulation of the carbon/nitrogen storage polymer cyanophycin by the signal transduction protein PII in Synechocystis sp. PCC 6803." PhD dissertation 162, Department of Biologie, Eberhard Karls University of Tübingen, Germany. DOI: http://dx.doi.org/10.15496/publikation-30424.
Wiefel, L., Bachmann, F., Terwort, J. and A. Steinbüchel, (2019a). "In vitro modification of bacterial cyanophycin and cyanophycin dipeptides using chemical agents towards novel variants of the biopolymer." Earth Systems and Environment, 3(3): 637-650. DOI: https://doi.org/10.1007/s41748-019-00107-y.
Wiefel, L. and A. Steinbüchel, (2016). "Enzymatic Modification of soluble cyanophycin using the type ii peptidyl Arginine deiminase from Oryctolagus cuniculus." Macromolecular Bioscience, 16: 1064-1071. DOI: https://doi.org/10.1002/mabi.201500433.
Wiefel, L., Wohlers, K. and A. Steinbüchel, (2019b). "Re-evaluation of cyanophycin synthesis in Corynebacterium glutamicum and incorporation of glutamic acid and lysine into the polymer." Applied Microbiology and Biotechnology, 103(10): 4033-4043. DOI: https://doi.org/10.1007/s00253-019-09780-5.
Wördemann, R., Wiefel, L., Wendisch, V. F. and A. Steinbüchel, (2021). "Incorporation of alternative amino acids into cyanophycin by different cyanophycin synthetases heterologously expressed in Corynebacterium glutamicum." AMB Express, 11(1): 55. DOI: https://doi.org/10.1186/s13568-021-01217-5.
Zeng, J., Chen, D., Zhu, J., Long, C., Qing, T., Feng, B. and P. Zhang, (2023). "Phosphate recovery using activated sludge cyanophycin: Adsorption mechanism and utilization as nitrogen-phosphorus fertilizer." Chemical Engineering Journal, 476: 146607. DOI: https://doi.org/10.1016/j.cej.2023.146607.
Ziegler, K., Deutzmann, R. and W. Lockau, (2002). "Cyanophycin synthetase-like enzymes of non-cyanobacterial eubacteria: Characterization of the polymer produced by a recombinant synthetase of Desulfitobacterium hafniense." Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 57(5-6): 522-529. DOI: https://doi.org/10.1515/znc-2002-5-621.
- Abstract Viewed: 71 times
- PDF Downloaded: 25 times