In Silico Evaluation of Antimicrobial Potential of Amaranth, Chia and Quinoa Peptides Released During the Simulated Gastric Digestion and Their Effects on Helicobacter pylori In silico antimicrobial potential study of amaranth, chia and quinoa peptid
Trends in Peptide and Protein Sciences,
Vol. 9 No. 1 (2024),
31 January 2024
,
Page 1-8 (e2)
https://doi.org/10.22037/tpps.v9i1.45658
Abstract
Helicobacter pylori is the most common cause of peptic ulcers and gastroduodenal pathologies and has been identified by the World Health Organization as a serious threat to human health. The increasing antibiotic resistance of H. pylori necessitates prevention and early intervention, as well as the discovery of novel drugs. Amaranth, chia, and quinoa are classified as pseudocereals and are known as superfoods because of their nutritional density. The effect of consuming these pseudocereals at the onset of H. pylori infection was investigated using in silico methods. 34 proteins from amaranth, chia, and quinoa were subjected to in silico pepsin digestion, and antimicrobial, antibiofilm, and cell-penetrating activities of the released peptides were analyzed. Peptides predicted to be cell-penetrating were further used for peptide-protein docking. 58 peptides were predicted to have antimicrobial activity whereas 76 were predicted to have antibiofilm activity. A total of 116 peptides were classified as cell-penetrating peptides, and those with the highest scores were used for peptide-protein docking with shikimate dehydrogenase, type II dehydroquinase, and D-alanine-D-alanine ligase of H. pylori to evaluate their enzyme inhibition potential. A peptide released from the chia seed proteins A0A1Z1EC55 and A0A1Z1EC46 with the sequence SWKYSHRRHHSNTGSL gave the highest docking energy scores for all three enzymes. To the best of our knowledge, this is the first work concerning the effect of ingested food on H. pylori infection. We believe our results will provide valuable data and a new point of view for the scientists interested in this topic.
HIGHLIGHTS
- H. pylori is a common infection and the leading cause of gastroduodenal pathologies.
- Gastric digestion of amaranth, chia, and quinoa proteins with pepsin revealed antimicrobial and antibiofilm peptides that may be effective against H. pylori growth.
- One particular peptide SWKYSHRRHHSNTGSL had high docking energy scores when docked to the three enzymes of H. pylori.
- Antimicrobial peptides
- Bioactive peptides
- Helicobacter pylori
- In silico analysis
- Protein digestion

How to Cite
References
Al-Fakhrany, O. M. and E. Elekhnawy, (2023). ″Helicobacter pylori in the post-antibiotics era: from virulence factors to new drug targets and therapeutic agents.″ Archives of Microbiology, 205(9): 301. DOI: https://doi.org/10.1007/s00203-023-03639-0
Ayala-Niño, A., Castañeda-Ovando, A., Jaimez-Ordaz, J., Rodríguez-Serrano, G. M., Sánchez-Franco, J. A. and L. G. González-Olivares, (2022). ″Novel bioactive peptides sequences released by in vitro digestion of proteins isolated from Amaranthus hypochondriacus.″ Natural Product Research, 36(13): 3485–3488. DOI: https://doi.org/10.1080/14786419.2020.1862837
The UniProt Consortium (2023). ″UniProt: the Universal Protein Knowledgebase in 2023.″ Nucleic Acids Research, 51(D1): D523–D531. DOI: https://doi.org/10.1093/nar/gkac1052
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and P. E. Bourne, (2000). ″The Protein Data Bank.″ Nucleic Acids Research, 28(1): 235-242. DOI: http://www.rcsb.org/pdb/status.html
Burrieza, H. P., Rizzo, A. J., Moura Vale, E., Silveira, V. and S. Maldonado, (2019). ″Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins.″ Food Chemistry, 293: 299–306. DOI: https://doi.org/10.1016/j.foodchem.2019.04.098
Chen, W. C., Wang, Y. F., Hsu, H. J. and K. C. Lin, (2012). ″Structures of Helicobacter pylori Shikimate Kinase Reveal a Selective Inhibitor-Induced-Fit Mechanism.″ PLoS ONE, 7(3): 33481. DOI: https://doi.org/10.1371/journal.pone.0033481
Grancieri, M., Martino, H. S. D. and E. Gonzalez de Mejia, (2019a). ″Chia Seed (Salvia hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review.″ Comprehensive Reviews in Food Science and Food Safety, 18(2): 480–499. DOI: https://doi.org/10.1111/1541-4337.12423
Guo, H., Hao, Y., Yang, X., Ren, G. and A. Richel, (2023). ″Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review.″ Critical Reviews in Food Science and Nutrition, 63(16): 2896–2909. DOI: https://doi.org/10.1080/10408398.2021.1982860
Hadjicharalambous, A., Bournakas, N., Newman, H., Skynner, M. J. and P. Beswick, (2022). ″Antimicrobial and cell-penetrating peptides: understanding penetration for the design of novel conjugate antibiotics.″ Antibiotics, 11(11): 1636. DOI: https://doi.org/10.3390/antibiotics11111636
Hou, C., Yin, F., Wang, S., Zhao, A., Li, Y. and Y. Liu, (2022). ″Helicobacter pylori biofilm-related drug resistance and new developments in ıts anti-biofilm agents.″ Infection and Drug Resistance, 15: 1561–1571. DOI: https://doi.org/10.2147/IDR.S357473
Ibrahim, K. A., Helmy, O. M., Kashef, M. T., Elkhamissy, T. R. and M. A. Ramadan, (2020). ″Identification of potential drug targets in Helicobacter pylori using in silico subtractive proteomics approaches and their possible inhibition through drug repurposing.″ Pathogens, 9(9): 1–21. DOI: https://doi.org/10.3390/pathogens9090747
Kaur, H., Shams, R., Dash, K. K. and A. H. Dar, (2023). ″A comprehensive review of pseudo-cereals: Nutritional profile, phytochemicals constituents and potential health promoting benefits.″ Applied Food Research, 3(2): 100351. DOI: https://doi.org/10.1016/J.AFRES.2023.100351
López‐garcía, G., Dublan‐garcía, O., Arizmendi‐cotero, D. and L. M. G. Oliván, (2022). ″Antioxidant and antimicrobial peptides derived from food proteins.″ Molecules, 27(4): 1343. DOI: https://doi.org/10.3390/molecules27041343
Malfertheiner, P., Camargo, M. C., El-Omar, E., Liou, J. M., Peek, R., Schulz, C., Smith, S. I. and S. Suerbaum, (2023). ″Helicobacter pylori infection.″ Nature Reviews Disease Primers, 9(1): 19. DOI: https://doi.org/10.1038/s41572-023-00431-8
Manavalan, B. and M. C. Patra, (2022). ″MLCPP 2.0: an updated cell-penetrating peptides and their uptake efficiency predictor.″ Journal of Molecular Biology , 434(11): 167604. DOI: https://doi.org/10.1016/j.jmb.2022.167604
Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H. and T. E. Ferrin, (2023). ″UCSF ChimeraX: Tools for structure building and analysis.″ Protein Science, 32(11): e4792. DOI: https://doi.org/10.1002/PRO.4792
Mezmale, L., Coelho, L. G., Bordin, D. and M. Leja, (2020). ″Epidemiology of Helicobacter pylori.″ Helicobacter, 25(S1): e12734. DOI: https://doi.org/10.1111/hel.12734
Minkiewicz, P., Iwaniak, A. and M. Darewicz, (2019). ″BIOPEP-UWM database of bioactive peptides: Current opportunities.″ International Journal of Molecular Sciences, 20(23): 5978. DOI: https://doi.org/10.3390/ijms20235978
Mirdita, M., Ovchinnikov, S., Steinegger, M., Schütze, K., Moriwaki, Y. and L. Heo, (2022). ″Brief CommuniCation ColabFold: making protein folding accessible to all.″ Nature Methods, 19: 679–682. DOI: https://doi.org/10.1038/s41592-022-01488-1
Montoya-Rodríguez, A., Gómez-Favela, M. A., Reyes-Moreno, C., Milán-Carrillo, J. and E. González de Mejía, (2015). ″Identification of bioactive peptide sequences from amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases.″ Comprehensive Reviews in Food Science and Food Safety, 14(2): 139–158. DOI: https://doi.org/10.1111/1541-4337.12125
Navruz-Varli, S. and N. Sanlier, (2016). ″Nutritional and health benefits of quinoa (Chenopodium quinoa) Willd.″ Journal of Cereal Science, 69: 371–376. DOI: https://doi.org/10.1016/J.JCS.2016.05.004
Nayab, S., Aslam, M. A., Rahman, S. ur, Sindhu, Z. ud D., Sajid, S., Zafar, N., Razaq, M., Kanwar, R. and Amanullah. (2022). ″A review of antimicrobial peptides: ıts function, mode of action and therapeutic potential.″ International Journal of Peptide Research and Therapeutics, 28(1): 46. DOI: https://doi.org/10.1007/s10989-021-10325-6
Paz, S., Tizón, L., Otero, J. M., Llamas-Saiz, A. L., Fox, G. C., Van Raaij, M. J., Lamb, H., Hawkins, A. R., Lapthorn, A. J., Castedo, L. and C. Gonzµlez-Bello, (2011). ″Tetrahydrobenzothiophene Derivatives: Conformationally Restricted Inhibitors of Type II Dehydroquinase.″ ChemMedChem, 6(2): 266-272. https://doi.org/10.1002/cmdc.201000343
Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H. and T. E. Ferrin, (2021). ″UCSF ChimeraX: Structure visualization for researchers, educators, and developers.″ Protein Science, 30(1): 70–82. DOI: https://doi.org/10.1002/PRO.3943
Rao, V. and A. Poonia, (2023). ″Protein characteristics, amino acid profile, health benefits and methods of extraction and isolation of proteins from some pseudocereals—a review.″ Food Production, Processing and Nutrition, 5(1): 1–17. DOI: https://doi.org/10.1186/S43014-023-00154-Z
Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang, J., Williams, R., Trawick, B. W., Pruitt, K. D. and S. T. Sherry, (2022). ″Database resources of the national center for biotechnology information.″ Nucleic Acids Research, 50(D1): D20–D26. DOI: https://doi.org/10.1093/nar/gkab1112
Sharma, A., Gupta, P., Kumar, R. and A. Bhardwaj, (2016). ″dPABBs: A novel in silico approach for predicting and designing anti-biofilm peptides.″ Scientific Reports, 6(1):21839 DOI: https://doi.org/10.1038/srep21839
Talapko, J., Meštrović, T., Juzbašić, M., Tomas, M., Erić, S., Horvat Aleksijević, L., Bekić, S., Schwarz, D., Matić, S., Neuberg, M. and I. Škrlec, (2022). ″Antimicrobial peptides—mechanisms of action, antimicrobial effects and clinical applications.″ Antibiotics, 11(10): 1417. DOI: https://doi.org/10.3390/antibiotics11101417
Tovar-Pérez, E. G., Lugo-Radillo, A. and S. Aguilera-Aguirre, (2019).″ Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity, and characterization.″ Food Reviews International, 35(3): 221–245. DOI: https://doi.org/10.1080/87559129.2018.1514625
Uma Mahto, K., Priyadarshanee, M., Samantaray, D. P. and S. Das, (2022). ″Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: Beyond the protective role in survivability.″ Journal of Cleaner Production, 379: 134759. DOI: https://doi.org/10.1016/j.jclepro.2022.134759
Valenzuela Zamudio, F., Hidalgo-Figueroa, S. N., Ortíz Andrade, R. R., Hernández Álvarez, A. J. and M. R. Segura Campos, (2022). ″Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia.″ Food Chemistry, 394: 133479. DOI: https://doi.org/10.1016/j.foodchem.2022.133479
Veltri, D., Kamath, U. and A. Shehu, (2018). ″Deep learning improves antimicrobial peptide recognition.″ Bioinformatics, 34(16): 2740-2747. DOI: https://doi.org/10.1093/bioinformatics/bty179
Vita, N. A., Anderson, S. M., LaFleur, M. D. and R. E. Lee, (2022). ″Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics.″ Current Opinion in Microbiology, 70: 102203. DOI: https://doi.org/10.1016/j.mib.2022.102203
Wu, D., Zhang, L., Kong, Y., Du, J., Chen, S., Chen, J., Ding, J., Jiang, H. and X. Shen, (2008). ″Enzymatic characterization and crystal structure analysis of the d‐alanine‐d‐alanine ligase from Helicobacter pylori.″ Proteins: Structure, Function, and Bioinformatics, 72(4): 1148-1160. https://doi.org/10.1002/prot.22009
Yasir, M., Duncan, M., Willcox, P. and Dutta, D. (2018). ″Action of antimicrobial peptides against bacterial biofilms.″ Materials, 11(12): 2468. DOI: https://doi.org/10.3390/ma11122468
Zhou, P., Jin, B., Li, H. and S. Y. Huang, (2018). ″HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm.″ Nucleic Acids Research, 46: 443–450. DOI: https://doi.org/10.1093/nar/gky357
Zhu, F. (2023). ″Amaranth proteins and peptides: Biological properties and food uses.″ Food Research International, 164: 112405. DOI: https://doi.org/10.1016/j.foodres.2022.112405
- Abstract Viewed: 163 times
- PDF Downloaded: 117 times