In-house Optimization Radiolabeling of Recombinant scFv with 99mTc-Tricarbonyl and Stability Studies Radiolabeling scFv with technetium tricarbonyl
Trends in Peptide and Protein Sciences,
Vol. 7 (2022),
7 March 2022
,
Page 1-6 (e10)
https://doi.org/10.22037/tpps.v7i.39823
Abstract
His-tagged scFv fragments of monoclonal antibodies have better pharmacokinetic properties than whole antibodies. Radiolabeled scFvs are considered for targeted imaging and treatment. Technetium tricarbonyl provides radiolabeling of scFvs without losing its biological activity in a fast and easy procedure. Technetium tricabonyl was prepared as follows: A freshly eluted solution of Na99mTcO4 was added to a mixture containing sodium carbonate, sodium potassium tartarate, boranocarbonate, sodium borohydride. The mixture was heated for 30 min at 100°C. Radiochemical purity was determined using radio thin lyer chromatography. Then, technetium tricarbonyl was added to a solution of scFv in PBS buffer and incubated for 2 h at 50°C, purified by PD-10 column and radiochemical purity was determined. Results showed that radiochemical purity of technetium tricarbony was over 98%. The best conditions for radiolabeling of scFv was: scFv concentration >2 mg/mL, PBS buffer, 2 h incubation at 50°C, pH 8-9, and high activity concentration of tricarbonyl. The best radiochemical purity of scFv was 70% before purificarion. Radiolabeled scFv was stable in PBS for 24 h incubation and there was no release of technetium in competition with histidine. In this study, we optimized radiolabeling of a scFv with technetium tricarbonyl using house made boranocarbonates. The results are promising and will be used for future studies.
HIGHLIGHTS
- Radiolabeling of scFv was done directly by 99mTc-tricarbonyl.
- 99mTc-tricarbonyl was prepared in house from boranocarbonate.
- 99mTc-Radiolabeled scFv can be used for radioimmunoscintigraphy.
- His-tag radiolabeling
- Monoclonal antibodies
- scFv
- Technetium-99m
- 99mTc-Tricarbonyl
How to Cite
References
Alberto, R., Schibli, R., Egli, A., Schubiger, A.P., Abram, U. and T.A. Kaden, (1998). ″A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc (OH2)3 (CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand.″ Journal of the American Chemical Society, 120(31): 7987-7988. DOI: https://doi.org/10.1021/JA980745T.
Alberto, R., Ortner, K., Wheatley, N., Schibli, R. and A.P. Schubiger, (2001). ″Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [(99m)Tc(OH(2))3(CO)3]+.″ Journal of the American Chemical Society, 123(13): 3135-3136. DOI: https://doi.org/10.1021/ja003932b.
Alberto, R. (2005). ″New organometallic technetium complexes for radiopharmaceutical imaging.″ In: Krause, W. (Ed.), Contrast Agents III. Topics in Current Chemistry, vol 252. Springer, Berlin, Heidelberg, pp. 1-44. https://doi.org/10.1007/b101223.
Badar, A., Williams, J., de Rosales, R., Tavaré, R., Kampmeier, F., Blower, P.J. and G.E. Mullen, (2014). ″Optimising the radiolabelling properties of technetium tricarbonyl and His-tagged proteins.″ EJNMMI Research, 4(1): 1-8. DOI: https://doi.org/10.1186%2F2191-219X-4-14.
Kodina, G.E., Malysheva, A.O., Klement'eva, O.E., Inkin, A.A., Gorshkov, N.I., and A.A. Lumpov, (2005). "Mechanism of carbonylation reactions of technetium-99m." Journal of Nuclear and Radiochemical Sciences, 6(3): 183-185. DOI: https://doi.org/10.14494/jnrs2000.6.3_183.
Kręcisz, P., Czarnecka, K., Królicki, L., Mikiciuk-Olasik, E. and P. Szymański, (2020). ″Radiolabeled peptides and antibodies in medicine.″ Bioconjugate Chemistry, 32(1): 25-42. DOI: DOI: https://doi.org/10.1021/acs.bioconjchem.0c00617.
Liu, G., Dou, S., He, J., Vanderheyden, J.L., Rusckowski, M. and D.J. Hnatowich, (2004). ″Preparation and properties of 99mTc (CO)3+-labeled N, N-bis (2-pyridylmethyl)-4-aminobutyric acid.″ Bioconjugate Chemistry, 15(6): 1441-1446. DOI: https://doi.org/10.1021/bc049866a.
Malone, J, Leo, J. and R.W. Parry, (1967). ″The preparation and properties of the boranocarbonates.″ Inorganic Chemistry, 6(4): 817-822. DOI: https://doi.org/10.1021/ic50050a035.
Ovacik, M. and K. Lin, (2018). ″Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development.″ Clinical and Translational Science, 11(6): 540-552. DOI: https://doi.org/10.1111/cts.12567.
Ryman, J.T. and B. Meibohm, (2017). ″Pharmacokinetics of monoclonal antibodies.″ CPT: Pharmacometrics & Systems Pharmacology, 6(9): 576-588. DOI: doi: https://doi.org/10.1002/psp4.12224.
Schibli, R. and A.P. Schubiger, (2002). ″Current use and future potential of organometallic radiopharmaceuticals.″ European Journal of Nuclear Medicine and Molecular Imaging, 29(11): 1529-1542. DOI: https://doi.org/10.1007/s00259-002-0900-8.
Waibel, R., Alberto, R., Willuda, J., Finnern, R., Schibli, R., Stichelberger, A., Egli, A., Abram, U., Mach, J.P., Plückthun, A. and P.A. Schubiger, (1999). ″Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc (I)–carbonyl complex.″ Nature Biotechnology, 17(9): 897-901. DOI: https://doi.org/10.1038/12890.
Wang, R., Xiang, S., Feng, Y., Srinivas, S., Zhang, Y., Lin, M. and S. Wang, (2013). ″Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp.″ Frontiers in Cellular and Infection Microbiology, 3: 72. DOI: https://doi.org/10.3389/fcimb.2013.00072.
Williams, J.D., Kampmeier, F., Badar, A., Howland, K., Cooper, M.S., Mullen, G.E. and P.J. Blower, (2021). ″Optimal His-Tag design for efficient [99mTc (CO)3]+ and [188Re (CO)3]+ labeling of proteins for molecular imaging and radionuclide therapy by analysis of peptide arrays.″ Bioconjugate Chemistry, 32(7): 1242-1254. DOI: https://doi.org/10.1021%2Facs.bioconjchem.0c00561.
Willuda, J., Honegger, A., Waibel, R., Schubiger, P.A., Stahel, R., Zangemeister-Wittke, U. and A. Plückthun, (1999). ″High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment.″ Cancer Research, 59(22): 5758-5767. PMID: 10582696.
- Abstract Viewed: 212 times
- PDF Downloaded: 195 times