Antimicrobial Peptide Design, Molecular Docking and ADMET Studies Against the Methicillin-Resistant Staphylococcus aureus and Carbapenem-resistant and Carbapenemase-producing Pseudomonas aeruginosa Prediction of novel anti-MRSA and anti-CRPA AMPs
Trends in Peptide and Protein Sciences,
Vol. 7 (2022),
7 March 2022
,
Page 1-8 (e9)
https://doi.org/10.22037/tpps.v7i.39110
Abstract
Carbapenem-resistant and carbapenemase-producing Pseudomonas aeruginosa (CRPA) and methicillin-resistant Staphylococcus aureus (MRSA) are two pathogens that are resistant to currently available antimicrobials. As an alternative to effective medication molecules, antimicrobial peptides (AMPs) have the potential to cure superbug-caused infections effectively. Two new AMPs (ama1 and ama2) were designed utilizing a knowledge-based technique with optimal parameters. First, the PEP-FOLD 3.5 server made a de novo prediction of the AMPs' three-dimensional (3D) structure, which was validated using PROCHECK of SAVES v6.0 by checking the amino acid locations in the Ramachandra plot. Then, protein-peptide docking simulations of the predicted AMPs and reference AMP (Aurein 1.2) for positive control were performed using the HPEPDOCK docking web server, followed by the computation of the AMPs' physicochemical parameters and toxicity profile using the ProtParam and vNN-ADMET web servers, respectively. The sequences for ama1 and ama2 were AWGKIKALR and IKWLRLAKP, respectively. Docking analysis revealed that the antibacterial activity of ama1 and ama2 was superior to that of Aurein 1.2 against CRPA-resistant enzyme (6ew3), respectively. However, ama1, ama2, and Aurein 1.2 inhibited the activity of MRSA-resistant protein (4c12). Both the physicochemical qualities and the toxicity profiles were advantageous. Therefore, the in-silico-derived AMPs could serve as a pharmaceutical candidate for developing multidrug-resistant bacteria-effective antimicrobials.
HIGHLIGHTS
- Two cationic antimicrobial peptides (AMPs) were designed.
- Molecular docking of the AMPs revealed better antimicrobial activity than the reference.
- The novel AMPs had net positive charge and optimal hydrophobic amino acids.
- Antimicrobial peptides
- Molecular docking
- Pseudomonas aeruginosa
- Pharmacokinetic parameters
- Resistant pathogens
- Staphylococcus aureus
How to Cite
References
Aliyu, A., Ibrahim, Y.K.E. and B.A. Tytler, (2021). ″Characterization of some novel antimicrobial peptides from African common toad, Sclerophrys regularis.″. Nigerian Journal of Biotechnology. 38(2): 84-91. DOI: https://dx.doi.org/10.4314/njb.v38i2.9
Bakare, O.O., Keyster, M. and A. Pretorius, (2020). ″Identification of biomarkers for the accurate and sensitive diagnosis of three bacterial pneumonia pathogens using in silico approaches.″ BMC Molecular and Cell Biology. 21(1):82. DOI: https://10.1186/s12860-020-00328-4.
Conlon, J.M. and M. Mechkarska, (2014). ″Host-defense peptides with therapeutic potential from skin secretions of frogs from the family Pipidae.″ Pharmaceuticals, 7(1): 58–77. DOI: https://doi.org/10.3390/ph7010058.
Dailami, M., Artika, M.I. and M.D. Kusrini, (2016). ″Analysis and prediction of some histone derived antimicrobial peptides from toads Duttaphrynus melanostictus and Phyrinoidis asper.″ Journal of Pure and Applied Chemical Research, 5(2): 67-76. DOI: https://doi.org/10.21776/ub.jpacr.2016.005.02.231.
Ebbensgaard, A., Mordhorst, H., Overgaard, M.H., Nielsen, C.G., Aarestrup, F.M. and E.B. Hansen, (2015). ″Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria.″ PLoS ONE. 10(12): e0144611. DOI: https://doi.org/10.1371/journal.pone.0144611.
Ferrando, J. and L.A. Solomon, (2021). ″Recent progress using de novo design to study protein structure, design and binding interactions.″ Life, 11(3): 225. https://doi.org/10.3390/life11030225.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. and A. Bairoch, (2005). ″Protein Identification and Analysis Tools on the ExPASy Server.″ In: Walker, J.M. (ed), The Proteomics Protocols Handbook, Humana Press, pp. 571-607
Geitani, R., Moubareck, C.A., Touqui, L. and D.K. Sarkis, (2019). ″Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa.″ BMC Microbiology, 19:54 https://doi.org/10.1186/s12866-019-1416-8
Hashemi, Z.S., Zarei, M., Fath, M.K., Ganji, M., Farahani, M.S., Afsharnouri, F., Pourzardosht, N., Khalesi, B., Jahangiri, A., Rahbar, M.R. and S. Khalili, (2021). ″In silico approaches for the design and optimization of interfering peptides against protein-protein interactions.″ Frontiers in Molecular Biosciences, 8:6694 DOI: https://doi.org/10.3389/fmolb.2021.669431.
Lamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P. and P. Tufféry, (2016). ″PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and complex″ Nucleic Acids Research, 44(W1): W449-454. DOI: https://doi.org/10.1093/nar/gkw329.
Liscano, Y., Oñate-Garzón, J. and I.D. Ocampo-Ibáñez, (2020). ″In Silico discovery of antimicrobial peptides as an alternative to control SARS-CoV-2.″ Molecules, 25: 5535; DOI: https://doi.org/10.3390/molecules25235535.
Mishra, B. and G. Wang, (2012). ″Ab initio design of potent anti-MRSA peptides based on database filtering technology.″ Journal of the American Chemical Society, 134: 12426–12429. DOI: https://doi.org/10.1021/ja305644e.
Patocka, J., Nepovimova, E., Klimova, B., Wu, Q. and K. Kuca, (2019). ″Antimicrobial peptides: Amphibian host defense peptides.″ Current Medicinal Chemistry, 26(32): 5924–5946. DOI: https://doi.org/10.2174/0929867325666180713125314 .
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and T.E. Ferrin, (2004). ″UCSF Chimera--a visualization system for exploratory research and analysis.″ Journal of Computational Chemistry, 25 (13):1605-1612. DOI: https://doi.org/10.1002/jcc.20084.
Pirtskhalava, M., Vishnepolsky, B., Grigolava, M. and G. Managadze, (2021). ″Physicochemical features and peculiarities of interaction of AMP with the membrane.″ Pharmaceuticals, 14: 471. DOI: https://doi.org/10.3390/ph14050471 .
Regan, L., DeGrado, W.F., Landegren, U., Kaiser, R., Caskey, C. and L. Hood, (1988). ″Characterization of a helical protein designed from first principles.″ Science, 241(4868): 976–978. DOI: https://doi.org/10.1126/science.3043666.
Rabanal, F. and Y. Cajal, (2016). ″Therapeutic Potential of Antimicrobial Peptides.″ In: Villa, T. and M. Vinas, (Eds), New Weapons to Control Bacterial Growth. Springer, Switzerland. pp 433–451. DOI: https://doi.org/10.1007/978-3-319-28368-5_16.
Ruyck, J., Brysbaer,t G., Blossey, R. and M.F. Lensink, (2016). ″Molecular docking is a popular tool in drug design, an in silico travel.″ Advances and Applications in Bioinformatics and Chemistry. 28(9):1-11. DOI: https://doi.org/10.2147/AABC.S105289.
Sarkar, T., Chetia, M. and S. Chatterjee, (2021) ″Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond″. Frontiers in Chemistry, 9:691532. DOI: https://doi.org/10.3389/fchem.2021.691532.
Schyman, P., Liu, R., Desai, V. and A. Wallqvist. (2017). ″vNN web server for ADMET predictions.″ Frontiers in Pharmacology. 4(8):889. DOI: https://doi.org/10.3389/fphar.2017.00889.
Temime, L., Boëlle, P.Y., Courvalin, P. and D. Guillemot, (2003). ″Bacterial resistance to penicillin g by decreased affinity of penicillin-binding proteins″. Emerging Infectious Diseases, 9(4):411-7. DOI: https://doi.org/10.3201/eid0904.020213.
Tong, X., Li, J., Wei, R., Gong, L., Ji, X., He, T. and R. Wang, (2022). ″RW-BP100-4D, a Promising antimicrobial candidate with broad-spectrum bactericidal activity.″ Frontiers in Microbiology, 12:815980. DOI: https://doi.org/10.3389/fmicb.2021.815980.
Wang, G., Li, X. and Z. Wang, (2016). ″APD3: the antimicrobial peptide database as a tool for research and education.″ Nucleic Acid Research, 44: 1087-1094. DOI: https://doi.org/10.1093/nar/gkv1278.
Wang, Y., Fan, Y., Zhou, Z., Tu, H., Ren, Q., Wang, X., Ding, L., Zhou, X. and L. Zhang, (2017). ″De novo synthetic short antimicrobial peptides against cariogenic bacteria.″ Archives of Oral Biology, 80: 41-50. DOI: https://doi.org/10.1016/j.archoralbio.2017.03.017.
Wang, G., Zietz, C.M, Mudgapalli, A., Wang, S. and Z. Wang, (2022). ″The evolution of the antimicrobial peptide database over 18 years: Milestones and new features.″ Protein Science, 31(1):92-106. DOI: https://doi.org/10.1002/pro.4185.
Yu, G., Baeder Desiree, Y., Regoes, R. R., and J. Rolff, (2018). ″Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics.″ Proceedings of the Royal Society B: Biological Sciences, 285: 20172687. DOI: https://doi.org/10.1098/rspb.2017.2687.
Vishnepolsky, B., Zaalishvili,G., Karapetian, M., Nasrashvili, T., Kuljanishvili, N., Gabrielian, A., Rosenthal, A., Hurt, D.E., Tartakovsky, M., Grigolava, M. and M. Pirtskhalava, (2019). ″De Novo design and in vitro testing of antimicrobial peptides against gram-negative bacteria.″ Pharmaceuticals, 12: 82. DOI: https://doi.org/10.3390/ph12020082.
Zhou, P., Jin, B., Li, H. and S.Y. Huang, (2018). ″HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm.″ Nucleic Acids Research, 46(W1): W443-W450. DOI: https://doi.org/10.1093/nar/gky357.
Zouhir, A., Jemli, S., Omrani, R., kthiri, A., Jridi, T. and K. Sebei, (2021). ″In Silico molecular analysis and docking of potent antimicrobial peptides against murE enzyme of methicillin resistant Staphylococcus aureus.″ International Journal of Peptide Research and Therapeutics, 27(2):1253-1263. DOI: https://doi.org/10.1007/s10989-021-10165-4.
- Abstract Viewed: 779 times
- PDF Downloaded: 319 times