The Fabulous Impact of CRISPR Method in Sickle Cell Disease Treatment CRISPR-based therapies in sickle cell disease
Trends in Peptide and Protein Sciences,
Vol. 6 (2021),
24 February 2021
,
Page 1-8 (e2)
https://doi.org/10.22037/tpps.v6i.34202
Abstract
Sickle cell diseases are the most prevalent monogenic blood diseases with complications such as severe end-organ harm, pain, and reduced life expectancy. Dealing options for sickle cell diseases are inadequate, as there are just two FDA-approved drugs to decrease acute manifestation. The only sickle cell diseases curative procedure is bone marrow transplantation, frequently from a harmonized, related donor. Ex vivo manipulation of autologous hematopoietic stem and progenitor cells and subsequent transplantation of genetically altered cells theoretically offer an everlasting therapy appropriate to all sickle cell anemia patients, regardless of the accessibility of fit donors and graft-versus-host disease. In this review, we emphasize applying CRISPR gene editing strategies for sickle cell anemia treatment, containing the genetic modification and rectification of sickle cell disease mutation in β-globin and the stimulation of fetal hemoglobin to protect cells against sickling. We summarize the importance of stem cell manipulation to cure sickle cell anemia having likely lifetime efficacy for cell and gene therapies.
HIGHLIGHTS
• Sickle cell disease (SCD) is a type of monogenic blood disorders.
• The CRISPR/Cas9 technology can be used to treat SCD.
• RBC sickling is reversed by mutation correction or fetal hemoglobin induction.
- CRISPR/Cas
- Irregular hemoglobin S
- Fatal hemoglobin
- Gene editing
- Sickle cell disease
How to Cite
References
Antoniani, C., Meneghini, V., Lattanzi, A., Felix, T., Romano, O., Magrin, E., Weber, L., Pavani, G., El Hoss, S., Kurita, R., Nakamura, Y., Cradick, T.J., Lundberg, A.S., Porteus, M., Amendola, M., El Nemer, W., Cavazzana, M., Mavilio F. and A. Miccio, (2018). "Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus." Blood, 131(17): 1960-1973.
Arnold, S. D., Brazauskas, R., He, N., Li, Y., Aplenc, R., Jin, Z., Hall, M., Atsuta, Y., Dalal, J., Hahn, T., Khera, N., Bonfim, C., Majhail, N.S., Diaz, M.A., Freytes, C.O., Wood, W.A., Savani, B.N., Kamble, R.T., Parsons, S., Ahmed, I., Sullivan, K., Beattie, S., Dandoy, C., Munker, R., Marino, S., Bitan, M., Abdel-Azim, H., Aljurf, M., Olsson, R.F., Joshi, S., Buchbinder, D., Eckrich, M.J., Hashmi, S., Lazarus, H., Marks, D.I., Steinberg, A., Saad, A., Gergis, U., Krishnamurti, L., Abraham, A., Rangarajan, H.G., Walters, M., Lipscomb, J., Saber, W. and P. Satwani, (2017). ʺClinical risks and healthcare utilization of hematopoietic cell transplantation for sickle cell disease in the USA using merged databases.ʺ Haematologica, 102(11): 1823-1832.
Ataga, K.I., Kutlar, A., Kanter, J., Liles, D., Cancado, R., Friedrisch, J., Guthrie, T.H., Knight-Madden, J., Alvarez, O.A., Gordeuk, V.R., Gualandro, S., Colella, M.P., Smith, W.R., Rollins, S.A., Stocker, J.W. and R.P. Rother, (2016). ʺCrizanlizumab for the prevention of pain crises in sickle cell disease.ʺ New England Journal of Medicine, 376(5): 429-439.
Bak, R.O., Gomez-Ospina, N. and M.H. Porteus, (2018). ʺGene editing on center stage.ʺ Trends in Genetics, 34(8): 600-611.
Ballas, S.K. (2009). ʺThe cost of health care for patients with sickle cell disease.ʺ American Journal of Hematology, 84(6): 320-322.
Baronciani, D., Angelucci, E., Potschger, U., Gaziev, J., Yesilipek, A., Zecca, M., Orofino, M.G., Giardini, C., Al-Ahmari, A., Marktel, S., de la Fuente, J., Ghavamzadeh, A., Hussein, A.A., Targhetta, C., Pilo, F., Locatelli, F., Dini, G., Bader, P. and C. Peters, (2016). ʺHemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010.ʺ Bone Marrow Transplantation, 51(4): 536-541.
Barrangou, R. and J. A. Doudna, (2016). ʺApplications of CRISPR technologies in research and beyond.ʺ Nature Biotechnology, 34(9): 933-941.
Bhatia, M., Kolva, E., Cimini, L., Jin, Z., Satwani, P., Savone, M., George, D., Garvin, J., Paz, M.L., Briamonte, C., Cruz-Arrieta, E. and S. Sands, (2015). ʺHealth-related quality of life after allogeneic hematopoietic stem cell transplantation for sickle cell disease.ʺ Biology of Blood and Marrow Transplantation, 21(4): 666-672.
Brousseau, D.C., Panepinto, J.A., Nimmer, M. and R.G. Hoffmann, (2010). ʺThe number of people with sickle-cell disease in the United States: national and state estimates.ʺ American Journal of Hematology, 85(1): 77-78.
Chast, F. (2008). ʺChapter 1: A history of drug discovery: from first steps of chemistry to achievements in molecular pharmacology.ʺ In: Wermuth, C.G. (Ed), The Practice of Medicinal Chemistry (Third Edition). New York, Academic Press, p.p. 1-62.
Demirci, S., Leonard, A., Haro-Mora, J.J., Uchida, N. and J.F. Tisdale, (2019). ʺCRISPR/Cas9 for sickle cell disease: applications, future possibilities, and challenges.ʺ In: Stem Cells: Cham, K.T. (Ed), Translational Science to Therapy, Cell Biology and Translational Medicine, V. 5, Springer International Publishing, p.p. 37-52.
Demirci, S., Uchida N. and J.F. Tisdale, (2018). ʺGene therapy for sickle cell disease: An update.ʺ Cytotherapy, 20(7): 899-910.
Dever, D.P., Bak, R.O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C.E., Pavel-Dinu, M., Saxena, N., Wilkens, A.B. and S. Mantri, (2016). ʺCRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.ʺ Nature, 539(7629): 384-389.
Eapen, M., Brazauskas, R., Walters, M.C., Bernaudin, F., Bo-Subait, K., Fitzhugh, C.D., Hankins, J.S., Kanter, J., Meerpohl, J.J., Bolaños-Meade, J., Panepinto, J.A., Rondelli, D., Shenoy, S., Williamson, J., Woolford, T.L., Gluckman, E., Wagner, J.E. and J.F. Tisdale, (2019). ʺEffect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: a retrospective multicentre, cohort study.ʺ The Lancet Haematology, 6(11): e585-e596.
Ebrahimi, V. and A. Hashemi, (2020). ʺChallenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: a review.” Gene, 753: 144813.
Fischbach, M.A., Bluestone, J.A. and W.A. Lim, (2013). ʺCell-Based Therapeutics: The Next Pillar of Medicine.ʺ Science Translational Medicine, 5(179): 1-7.
Forget, B.G. (1998). ʺMolecular basis of hereditary persistence of fetal hemoglobin.ʺ Annals of the New York Academy of Sciences, 850: 38-44.
Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y.S., Domm, J., Eustace, B.K., Foell, J., de la Fuente, J., Grupp, S. and R. Handgretinger, (2021). "CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia." New England Journal of Medicine, 384(3): 252-260.
Gluckman, E., Cappelli, B., Bernaudin, F., Labopin, M., Volt, F., Carreras, J., Pinto Simões, B., Ferster, A., Dupont, S., de la Fuente, J., Dalle, J.H., Zecca, M., Walters, M.C., Krishnamurti, L., Bhatia, M., Leung, K., Yanik, G., Kurtzberg, J., Dhedin, N., Kuentz, M., Michel, G., Apperley, J., Lutz, P., Neven, B., Bertrand, Y., Vannier, J.P., Ayas, M., Cavazzana, M., Matthes-Martin, S., Rocha, V., Elayoubi, H., Kenzey, C., Bader, P., Locatelli, F., Ruggeri, A. and M. Eapen, (2017). ʺSickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation.ʺ Blood, 129(11): 1548-1556.
Gomez-Ospina, N., Scharenberg, S.G., Mostrel, N., Bak, R.O., Mantri, S., R.M. Quadros, Gurumurthy, C.B., Lee, C., Bao, G., Suarez, C.J., Khan, S., Sawamoto, K., Tomatsu, S., Raj, N., Attardi, L.D., Aurelian, L. and M.H. Porteus, (2019). ʺHuman genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I.ʺ Nature Communications, 10(1): 4045.
Hampton, H.G., Watson, B.N. and P.C. Fineran, (2020). ʺThe arms race between bacteria and their phage foes.ʺ Nature, 577(7790): 327-336.
Hashemi, A. (2018). ʺCRISPR-Cas system as a genome engineering platform: applications in biomedicine and biotechnology.ʺ Current Gene Therapy, 18(2): 115-124.
Hashemi, A. (2020). ʺCRISPR–Cas9/CRISPRi tools for cell factory construction in E. coli.ʺ World Journal of Microbiology and Biotechnology, 36(7): 1-13.
Hoban, M.D., Lumaquin, D., Kuo, C.Y., Romero, Z., Long, J., Ho, M., Young, C.S., Mojadidi, M., Fitz-Gibbon, S., Cooper, A.R., Lill, G.R., Urbinati, F., Campo-Fernandez, B., Bjurstrom, C.F., Pellegrini, M., Hollis, R.P. and D.B. Kohn, (2016). ʺCRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells.ʺ Molecular Therapy, 24(9): 1561-1569.
Huang, X., Wang, Y., Yan, W., Smith, C., Ye, Z., Wang, J., Gao, Y., Mendelsohn, L. and L. Cheng, (2015). ʺProduction of gene‐corrected adult beta globin protein in human erythrocytes differentiated from patient i PSCs after genome editing of the sickle point mutation.ʺ Stem Cells, 33(5): 1470-1479.
Humbert, O., Peterson, C.W., Norgaard, Z.K., Radtke, S. and H.P. Kiem, (2018). ʺA nonhuman primate transplantation model to evaluate hematopoietic stem cell gene editing strategies for β-hemoglobinopathies.ʺ Molecular Therapy - Methods and Clinical Development, 8: 75-86.
Iliakis, G., Wang, H., Perrault, A.R., Boecker, W., Rosidi, B., Windhofer, F., Wu, W., Guan, J., Terzoudi, G. and G. Pantelias, (2004). ʺMechanisms of DNA double strand break repair and chromosome aberration formation.ʺ Cytogenetic and Genome Research, 104(1-4): 14-20.
Ji, K. (2020). ʺCorrection of the sickle cell mutation through base and prime editing in hematopoietic stem cells.ʺ Preprints, 2020: 2020090490 (doi: 10.20944/preprints202009.0490.v1).
Karthika, V., Babitha, K.C., Kiranmai, K., Shankar, A.G., Vemanna, R.S. and M. Udayakumar, (2020). ʺInvolvement of DNA mismatch repair systems to create genetic diversity in plants for speed breeding programs.ʺ Plant Physiology Reports, 25(2): 185-199.
Khalifa, M. and S. Bidaisee, (2018). ʺThe importance of clean water.ʺ Scholar Journal of Applied Sciences and Research, 1(7): 17-20.
King, E.A., Davis, J.W. and J.F. Degner, (2019). ʺAre drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval.ʺ PLOS Genetics, 15(12): e1008489.
Kitada, T., DiAndreth, B., Teague, B. and R. Weiss, (2018). ʺProgramming gene and engineered-cell therapies with synthetic biology.ʺ Science, 359(6376): eaad1067.
Li, Q., Peterson, K.R., Fang, X. and G. Stamatoyannopoulos, (2002). ʺLocus control regions.ʺ Blood, 100(9): 3077-3086.
Liu, N., Hargreaves, V.V., Zhu, Q., Kurland, J.V., Hong, J., Kim, W., Sher, F., Macias-Trevino, C., Rogers, J.M., Kurita, R., Nakamura, Y., Yuan, G.C., Bauer, D.E., Xu, J., Bulyk, M.L. and S.H. Orkin, (2018). ʺDirect Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch.ʺ Cell, 173(2): e417 (430-442).
Liu, X., Zhang, Y., Cheng, C., Cheng, A.W., Zhang, X., Li, N., Xia, C., Wei, X., Liu, X. and H. Wang, (2017). ʺCRISPR-Cas9-mediated multiplex gene editing in CAR-T cells.ʺ Cell Research, 27(1): 154-157.
Madhav, A., Mehrotra, T., Sinha, P. and A. Mutreja, (2020). ʺVaccines for neglected, emerging and re-emerging diseases.ʺ Seminars in Immunology, 50: 101423.
Magis, W., DeWitt, M.A., Wyman, S.K., Vu, J.T., Heo, S.J., Shao, S.J., Hennig, F., Romero, Z.G., Campo-Fernandez, B. and M. McNeill, (2018). ʺIn vivo selection for corrected ß-globin alleles after CRISPR/Cas9 editing in human sickle hematopoietic stem cells enhances therapeutic potential.ʺ BioRxiv, 432716 (doi: https://doi.org/10.1101/432716).
Malech, H.L. (2021). "Treatment by CRISPR-Cas9 Gene Editing — A Proof of Principle." New England Journal of Medicine, 384(3): 286-287.
Mali, P. and L. Cheng, (2012). ʺConcise Review: Human Cell Engineering: Cellular Reprogramming and Genome Editing.ʺ Stem Cells, 30(1): 75-81.
Martyn, G.E., Wienert, B., Yang, L., Shah, M., Norton, L.J., Burdach, J., Kurita, R., Nakamura, Y., Pearson, R.C.M., Funnell, A.P.W., Quinlan, K.G.R. and M. Crossley, (2018). ʺNatural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.ʺ Nature Genetics, 50(4): 498-503.
Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V. and J. Van der Oost, (2016). ʺDiverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.ʺ Science, 353(6299): aad5147.
Nakayama, D.K. (2018). ʺAntisepsis and asepsis and how they shaped modern surgery.ʺ The American Surgeon, 84(6): 766-771.
Nussenzweig, P.M. and L. A. Marraffini, (2020). ʺMolecular mechanisms of CRISPR-Cas immunity in bacteria.ʺ Annual Review of Genetics, 54(1): 93-120.
Orkin, S.H. and D.E. Bauer, (2019). ʺEmerging genetic therapy for sickle cell disease.ʺ Annual Review of Medicine, 70(1): 257-271.
Paikari, A. and V.A. Sheehan, (2018). ʺFetal haemoglobin induction in sickle cell disease.ʺ British Journal of Haematology, 180(2): 189-200.
Paix, A., Folkmann, A., Goldman, D.H., Kulaga, H., Grzelak, M.J., Rasoloson, D., Paidemarry, S., Green, R., Reed R.R. and G. Seydoux, (2017). ʺPrecision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks.ʺ Proceedings of the National Academy of Sciences, 114(50): E10745-E10754.
Pasricha, S.R. and H. Drakesmith, (2018). ʺHemoglobinopathies in the Fetal Position.ʺ New England Journal of Medicine. 379(17): 1675-1677.
Pauling, L., Itano, H.A. and Singer, S.J. and I.C. Wells, (1949). ʺSickle cell anemia a molecular disease.ʺ Science, 110(2865): 543-548.
Paulukonis, S.T., Eckman, J.R., Snyder, A.B., Hagar, W., Feuchtbaum, L.B., Zhou, M., Grant A.M. and M.M. Hulihan, (2016). ʺDefining sickle cell disease mortality using a population-based surveillance system, 2004 through 2008.ʺ Public Health Reports, 131(2): 367-375.
Pavel-Dinu, M., Wiebking, V., Dejene, B.T., Srifa, W., Mantri, S., Nicolas, C.E., Lee, C., Bao, G., Kildebeck, E.J., Punjya, N., Sindhu, C., Inlay, M.A., Saxena, N., DeRavin, S.S., Malech, H., Roncarolo, M.G., Weinberg K.I. and M.H. Porteus, (2019). ʺGene correction for SCID-X1 in long-term hematopoietic stem cells.ʺ Nature Communications, 10(1): 1634.
Piel, F.B., Steinberg, M.H. and D.C. Rees, (2017). ʺSickle Cell Disease.ʺ New England Journal of Medicine, 376(16): 1561-1573.
Platt, O.S., Orkin, S., Dover, G., Beardsley, G., Miller, B. and D. Nathan, (1984). ʺHydroxyurea enhances fetal hemoglobin production in sickle cell anemia.ʺ The Journal of Clinical Investigation, 74(2): 652-656.
Porteus, M. (2016). ʺGenome editing: a new approach to human therapeutics.ʺ Annual Review of Pharmacology and Toxicology, 56(1): 163-190.
Ramírez-Castillo, F.Y., Loera-Muro, A., Jacques, M., Garneau, P., Avelar-González, F.J., Harel J. and A.L. Guerrero-Barrera, (2015). "Waterborne pathogens: detection methods and challenges." Pathogens, 4(2): 307-334.
Román-Rodríguez, F.J., Ugalde, L., Álvarez, L., Díez, B., Ramírez, M.J., Risueño, C., Cortón, M., Bogliolo, M., Bernal, S., March, F., Ayuso, C., Hanenberg, H., Sevilla, J., Rodríguez-Perales, S., Torres-Ruiz, R., Surrallés, J., Bueren J.A. and P. Río, (2019). "NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with fanconi anemia." Cell Stem Cell, 25(5): 607-621 (e607).
Saenz, C. and J.F. Tisdale, (2015). ʺAssessing costs, benefits, and risks in chronic disease: taking the long view.ʺ Biology of Blood and Marrow Transplantation, 21(7): 1149-1150.
Sankaran, V.G. and S.H. Orkin, (2013). ʺThe switch from fetal to adult hemoglobin.ʺ Cold Spring Harbor Perspectives in Medicine, 3(1): a011643.
Shim, G., Kim, D., Park, G.T., Jin, H., Suh S.K. and Y.K. Oh, (2017). ʺTherapeutic gene editing: delivery and regulatory perspectives.ʺ Acta Pharmacologica Sinica, 38(6): 738-753.
Sniegowski, P. and Y. Raynes, (2013). ʺMutation rates: how low can you go?ʺ Current Biology, 23(4): R147-R149.
Stamatoyannopoulos, G., Wood, W.G., Papayannopoulou, T. and P.E. Nute, (1975). ʺA new form of hereditary persistence of fetal hemoglobin in blacks and its association with sickle cell trait.ʺ Blood, 46(5): 683-692.
Tasan, I., Jain, S. and H. Zhao, (2016). ʺUse of genome-editing tools to treat sickle cell disease.ʺ Human Genetics, 135(9): 1011-1028.
van Houte, S., Buckling A. and E.R. Westra, (2016). ʺEvolutionary ecology of prokaryotic immune mechanisms.ʺ Microbiology and Molecular Biology Reviews, 80(3): 745-763.
Waddington, K. and M. Jackson, (2015). ʺThe History of medicine: a beginner’s guide.ʺ Social History of Medicine, 28(2): 423-424.
Wang, X. and S.L. Thein, (2018). ʺSwitching from fetal to adult hemoglobin.ʺ Nature Genetics, 50(4): 478-480.
Watson, J. (1948). ʺThe significance of the paucity of sickle cells in newborn Negro infants.ʺ American Journal of the Medical Sciences, 215(4): 419-423.
Zhang, J.P., Li, X.L., Li, G.H., Chen, W., Arakaki, C., Botimer, G.D., Baylink, D., Zhang, L., Wen, W., Fu, Y.W., Xu, J., Chun, N., Yuan, W., Cheng, T. and X.B. Zhang, (2017). ʺEfficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage.ʺ Genome Biology, 18(1): 35 (1-18).
- Abstract Viewed: 1046 times
- PDF Downloaded: 455 times