Diuretic Activity of the Flavonoid Pinostrobin Previously Identified from the Species Renealmia alpinia Diuretic Activity of Pinostrobin
International Pharmacy Acta,
,
,
Page e4: 1-6
https://doi.org/10.22037/ipa.v6i1.38372
Abstract
Renealmia alpinia is a plant traditionally employed as antiophidic, pain reliever, antipyretic, and antiemetic. Its main metabolites are flavonoids, with pinostrobin as the most abundant compound of this plant species. In this study, we determined the diuretic activity of pinostrobin, previously identified from the species Renealmia alpinia in normal mice.
The evaluation of the diuretic activity of the flavonoid pinostrobin was carried out at doses of 5, 10, and 20 mg/kg of body weight. The diuretic activity was evaluated using the Kau et al. (1984) method with modifications made by Benjumea et al. (2005), using mice instead of rats. Metabolic cages equipped with graduated cylinders were used to measure the volume of urine excretion at 2, 4, and 6 hours. At 6 hours, pH and conductivity were measured, and the concentration of excreted sodium, potassium, magnesium, and calcium ions was estimated by ion chromatography. Creatinine, albumin, blood urea nitrogen, and urea of mice blood were analyzed.
There was an increase of 32% and 38% at a dose of 10 and 20 mg/kg, respectively, in the urinary excretion of water by pinostrobin, an elimination of sodium concentration similar to furosemide at 5 and 10 mg/kg, An increase in potassium concentration of 52% at 10 mg/kg and a higher magnesium excretion of 85% at 5 mg/kg, were statistically significant compared to furosemide.
Pinostrobin showed a diuretic effect increasing the volume of urinary excretion in mice and excretion of sodium, potassium, magnesium, and calcium ions, with a possible mechanism in the loop of Henle.
- Diuretics
- Flavonoid
- Furosemide
- Medicinal plant
- Pinostrobin
- Urinary excretion
How to Cite
References
Otero R, Fonnegra R, Jimenez SL, Nuñez V, Evans N, Alzate SP, Garcia ME, Saldarriaga M, Del Valle G, Osorio RG, Diaz A, Valderrama R, Duque A, Velez HN. Snakebites and ethnobotany in the northwest region of Colombia: Part I: traditional use of plants. J Ethnopharmacol. 2000;71 (3): 493-504.
Gómez-Betancur I, Benjumea D. Traditional use of the genus Renealmia and Renealmia alpinia (Rottb.) Maas (Zingiberaceae)-a review in the treatment of snakebites. Asian Pac J Trop Med. 2014;7S1: S574-82.
Patiño AC, López J, Aristizábal M, Quintana JC, Benjumea D. Evaluation of the inhibitory effect of extracts from leaves of Renealmia alpinia Rottb. Maas (Zingiberaceae) on the venom of Bothrops asper (mapaná). Biomédica. 2012;32 (3): 365-74. Spanish.
Gasparotto Junior A, Gasparotto FM, Boffo MA, Lourenço EL, Stefanello MÉ, Salvador MJ, da Silva-Santos JE, Marques MC, Kassuya CA. Diuretic and potassium-sparing effect of isoquercitrin—An active flavonoid of Tropaeolum majus L. J Ethnopharmacol. 2011;134 (2): 210–5.
Chodera A, Dabrowska K, Sloderbach A, Skrzypczak L, Budzianowski J. Effect of flavonoid fractions of Solidago virgaurea L on diuresis and levels of electrolytes. Acta Pol Pharm. 1991;48 (5–6): 35—37.
Xiao J, Jiang X, Chen X. Antibacterial, anti-inflammatory and diuretic effect of flavonoids from Marchantia convoluta. African J Tradit Complement Altern Med. 2005;2 (3): 244–52.
Patel NK, Jaiswal G, Bhutani KK. A review on biological sources, chemistry and pharmacological activities of pinostrobin. Nat Prod Res. 2016;30 (18): 2017–27.
Gómez-betancur I, Cortés N, Benjumea D, Osorio E, León F, Cutler SJ. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia. J Ethnopharmacol. 2015;165: 191–7.
Mariano LNB, Boeing T, da Silva RCMVAF, Cechinel-Filho V, Niero R, da Silva LM, de Souza P, Andrade SF. Preclinical evaluation of the diuretic and saluretic effects of (-)-epicatechin and the result of its combination with standard diuretics. Biomed Pharmacother. 2018;107: 520-525.
Yuliana ND, Khatib A, Link-Struensee AMR, Ijzerman AP, Rungkat-Zakaria F, Choi YH, Verpoorte R. Adenosine A1 receptor binding activity of methoxy flavonoids from Orthosiphon stamineus. Planta Med. 2009;75 (02): 132-136.
Jouad H, Lacaille-Dubois MA, Lyoussi B, Eddouks M. Effects of the flavonoids extracted from Spergularia purpurea Pers. on arterial blood pressure and renal function in normal and hypertensive rats. J Ethnopharmacol. 2001;76 (2): 159-163.
Çubukçu B. Helichrysum species as choleretic, chologogue crude drugs. Acta Pharmaceutica Turcica. 2002;44: 145–150.
Hossain MA, Rahman SM. Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arabian Journal of Chemistry. 2015;8 (2): 218-221.
Stanic G, Samaržija I. Diuretic Activity of Satureja montana subsp. montana extracts and oil in rats. Phytotherapy Research. 1993;7 (5): 363-366.
Patel U, Kulkarni M, Undale V, Bhosale A. Evaluation of diuretic activity of aqueous and methanol extracts of Lepidium sativum garden cress (Cruciferae) in rats. Trop J Pharm Res. 2009;8 (3): 215-219.
Younis W, Alamgeer, Schini-Kerth VB, da Silva DB, Gasparotto Junior A, Bukhari IA, Assiri AM. Role of the NO/cGMP pathway and renin-angiotensin system in the hypotensive and diuretic effects of aqueous soluble fraction from Crataegus songarica K. Koch. J Ethnopharmacol. 2020;249: 112400.
Kalinina SA, Elkina OV, Kalinin DV, Syropyatov BY, Dolzhenko AV. Diuretic activity and toxicity of some Verbascum nigrum extracts and fractions. Pharm Biol. 2014;52 (2): 191-198.
Patiño AC. Renealmia alpinia (Rottb.) Maas (Zingiberaceae) una especie vegetal inhibidora del envenenamiento ocasionado por algunas serpientes colombianas: de la medicina tradicional a la validación experimental [thesis]. [Medellin]: Universidad de Antioquia: 2013. 124 p. Spanish.
Canadian Council on Animal Care. Guidelines On-choosing an Appropriate Endpoint Experiments Using Animals for Research, Teaching and Testing. The Council [Internet]. 1998 [cited 2017 Oct 10]. Available from: https://www.ccac.ca/Documents/Standards/Guidelines/Appropriate_endpoint.pdf
National Institutes of Health. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington DC: National Academic Press [Internet]. 2011 [cited 2017 Oct 10]. Available from: https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf
Kau ST, Keddie JR, Andrews D. A method for screening diuretic agents in the rat. J Pharmacol Methods.1984;11 (1): 67-75.
Benjumea D, Abdala S, Hernandez-Luis F, Pérez-Paz P, Martin-Herrera D. Diuretic activity of Artemisia thuscula, an endemic canary species. J. Ethnopharmacol. 2005;100 (1-2): 205–209.
Katzung B, Masters S, Treveor A, Araiza Martínez M. Basic and clinical pharmacology. 12th ed. Mexico: MacGraw Hill; 2013.
Galati EM, Trovato A, Kirjavainen S, Forestieri AM, Rossitto A, Monforte MT. Biological effects of hesperidin, a Citrus flavonoid. (Note III): antihypertensive and diuretic activity in rat. Farmaco. 1996;51 (3): 219-221.
Boeing T, da Silva LM, Mariott M, Andrade SF, de Souza P. Diuretic and natriuretic effect of luteolin in normotensive and hypertensive rats: Role of muscarinic acetylcholine receptors. Pharmacol Rep. 2017;69 (6): 1121-1124.
Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect. 2018;7 (4): 135–146.
Pérez González E, Santos Rodríguez F, Coto García E. Homeostasis of the magnesium. Physiology, etiopatogenia, clinic and treatment of the hypomagnesemia. Nefrología (Madr.). 2009;29 (6): 518-524.
Rondón-Berríos H. Hypomagnesemia. An Fac Med. 2006;67 (1): 38-48.
Cohen SM. Role of urinary physiology and chemistry in bladder carcinogenesis. Food Chem Toxicol. 1995;33 (9): 715–30.
University of Arizona. Clinical Pathology University Animal Care [Internet]. [cited 2019 Nov 12]. Available from: https://uac.arizona.edu/services/veterinary-services/pathology/clinical-pathology-0
Quimby FW, Luong RH. Clinical Chemistry of the Laboratory Mouse. The Mouse in Biomedical Research. 2007; 171–216.
- Abstract Viewed: 38 times
- IPA-2023-Vol6-e4-38372 Downloaded: 51 times