Revealing the Key Proteins under Telecommunications’ Tower in Brain Tissue of Rats through Proteomics Approach Biological effects of ELF/EMF on Brain’s tissue
Archives of Advances in Biosciences,
Vol. 11 No. 4 (2020),
28 November 2020
,
Page 39-46
https://doi.org/10.22037/aab.v11i4.32955
Abstract
Introduction: Although there are a lot of interests in telecommunications tower approaches in view of Cancer, limited researches have studied the molecular pathways, which are enriched under ELF/EMF. The aim of this study is investigating the key proteins, affected by by Tower.
Materials and Methods: In this study, 30 Rats under wavelength electromagnetic waves (RF900 MHz) were randomly selected. Two-dimensional electrophorese was performed to study proteomics of Rat’s brain.
Results: Totally, 26 differentially uttered proteins (DEPs) were categorized by cytoscape network analysis.
Conclusion: Some key proteins in view of cancer are regulated under the face of a non-standard (unconventional) radio frequency radiation, which can induce the complement and coagulation cascades pathway.
- Tower, proteomic, protein functions, Cytoscape network.
How to Cite
References
Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. Prog Biophys Mol Biol. 2010; 105(3):223-246.
Karasek M, Lerchl A. Melatonin magnetic fields. Neuro Endocrinol Lett. 2002; 23:84-87.
Woldanska-Okonska M, Karasek M, Czernicki J. The influence of chronic exposure to low frequency pulsating magnetic fields on concentrations of FSH, LH, prolactin, testosterone and estradiol in men with back pain. Neuro Endocrinol Lett. 2004; 25:201-206.
Woldanska-Okonska M, Czernicki J. Effects of low frequency pulsating magnetic fields used in magnetotherapy and magnetostimulation on cortisol secretion in humans. Med Pr. 2003; 54(1):29-32.
Akerstedt T, Arnetz B, Ficca G, Paulsson LE, Kallner A. A 50 Hz electromagnetic field impair sleep. J Sleep Res. 1999; 8:77-81. doi:10.1046/j.1365-2869.1999.00100.x.
Selmaoui B, lambrozo J, Touito Y. Endocrine functions in young men exposed one night to 50 Hz magnetic field A circadian study of pituitary, thyroid and adrenocortical hormones. Life Sci. 1997; 61:473-486.
Graham C, Cook MR, Cohen HD, Riffle DW, Hoffman S, Gerkovich MM. Human exposure to 60-Hz magnetic fields: neurophysiological effects. Int J Psychophysiol. 1999; 33: 169-175.
Graham C, Cook M R. Human sleep in 60 Hz magnetic fields. Bioelectromagnetics. 1999; 20:277-283.
Bonhomme-Faivre L, Macé A, Bezie Y, et al. Alteration of biological parameters in mice chronically exposed to lowfrequeny (50-Hz) electromagnetic fields. Life Sci. 1998; 62: 1271-1280. doi: 10.1016/s0024-3205(98)00057-5.
Zwirska-Korczala K, Jochem J, Adamczyk-Sowa M, et al. Effect of extremely low frequency electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes- an in vitro study. J Physiol Pharmacol. 2005; 56:101-108.
Gerardi G, De Ninno A, Prosdocimi M, et al. Effects of electromagnetic fields of low frequency and low intensity on rat metabolism. Biomagn Res Technol. 2008; 6:3.
Zecca L, Mantegazza C, Margonato V, et al. Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III. 50 Hz electrommagnetic fields. Bioelectromagnetics. 1998; 19(1):57-66.
Margonato V, Veicsteinas A, Conti R, Nicolini P, Cerretelli P. Biologic effects of prolonged exposure to ELF electromagnetic fields in rats. I. 50 Hz electric fields. Bioelectromagnetics. 1993; 14:479-493. doi: 10.1002/ bem.2250140508.
Wolf FI, Torsello A, Tedesco B, et al. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of redox mechanism. Biochim Biophys Acta. 2005; 1743:120-129. doi:10.1016/j.bbamcr.2004.09.005.
Ivancsits S, Pilger A, Diem E, Jahn O, Rüdiger HW. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res. 2005; 583:184-188. doi:10.1016/j.mrgentox.2005.03.011.
Pilger A, Ivancsits S, Diem E, Steffens M, Kolb HA, Rüdiger HW. No effects of intermittent 50 Hz EMF on cytoplasmic free calcium and on the mitochondrial membrane potential in human diploid fibroblasts. Radiat Environ Biophys. 2004; 43:203-207. doi: 10.1007/s00411-004-0252-9.
Cho YH, Chung HW. The effect of extremely low frequency electromagnetic fields (ELF/EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo (a) pyrene. Toxicol Lett. 2003; 143:37-44. doi: 10.1016/s0378-4274(03)00111-5.
Winker R, Ivancsits S, Pilger A, Adlkofer F, Rüdiger HW. Chromosomal damage in human diploid fibroblast by intermittent exposure to extremely low frequency electromagnetic fields. Mutat Res. 2005; 585:43-9.
Erdal N, Gürgül S, Celik A. Cytogenetic effects of extremely low frequency magnetic field on Wistar rat bone marrow. Mutat Res. 2007; 630: 69–77.
Pourlis AF. Reproductive and developmental effects of EMF in vertebrate animal models. Pathophysiology. 2009; 16:179189. doi:10.1016/j.pathophys.2009.01.010.
Narita K, Hanakawa K, Kasahara T, Hisamitsu T, Asano K. Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency electric magnetic fields: analysis of the possible mechanisms in vitro. In Vivo. 1997; 11:329-336.
Hisamitsu T, Narita K, Kasahara T, Seto A, Yu Y, Asano K. Induction of apoptosis in human leukemic cells by magnetic fields. Jpn J Physiol. 1997; 47:307–310.
Feychting M, Ahlbom A. Magnetic-fields, leukemia and central nervous-system tumors in Swedish adults residing near high-voltage power-lines. Epidemiology. 1994; 5:501509. doi: 10.1097/00001648-199807000-00008.
Vázquez-García M, Elías-Viñas D, Reyes-Guerrero G, Domínguez-González A, Verdugo-Díaz L, GuevaraGuzmán R. Exposure to low-frequency electromagnetic field improves social recognition in male rats. Physiol Behav. 2004; 82:685-90. doi:10.1016/j.physbeh.2004.06.004.
Trimmel M, Schweiger E. Effect of an ELF 50 Hz, 1mT electromagnetic field on concentration in visual attention, perception and memory including effects of EMF sensitivity. Toxicol Lett. 1998; 97:377-382.
Szemerszky R, Zelena D, Barna I, Bárdos G. Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats. Brain Res Bull. 2010; 81:92-99.
Falone S, Mirabilio A, Carbone MC, et al. Chronic exposure to 50Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int J Biochem Cell Biol. 2008; 40:2762-2770.
Gulturk S, Demirkazik A, Kosar I, Cetin A, Dökmetas HS, Demir T. Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotocin-induced diabetic rats. Bioelectromagnetics. 2010; 31(4):262-269. doi:10.1002/bem.20557.
Marchionni I, Paffi A, Pellegrino M, et al. Comparison between low-level 50 Hz and 900 MHz electromagnetic stimulation on single channel ionic currents and on firing frequency in dorsal root ganglion isolated neurons Biochim Biophys Acta. 2006; 1758:597-605. doi: 10.1016/j. bbamem.2006.03.014.
Lai H, Carino M. 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration. Bioelectromagnetics. 1999; 20(5):284-289.
Cuccurazzu B, Leone L, Podda MV, et al. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol. 2010; 226:173-182. doi: 10.1016/j. expneurol.2010.08.022.
Choleris E, Thomas AW, Kavaliers M, Prato FS. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev. 2001; 25:235-260. doi: 10.1016/s0149-7634(01)00011-2.
Tamasidze AG. Influence of the chronic exposure to network frequency electromagnetic field on rats under interrupted and continuous action of EMF. Georgian Med News. 2006; 140:91-93.
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957; 226(1):497-509.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54.
Khaghani-Razi-Abad S, Hashemi M, Pooladi M, Entezari M, Kazemi E. Proteomics analysis of human oligodendroglioma proteome. Gene. 2015; 569(1):77-82.
Kochanek AR, Kline AE, Gao WM, Chadha M, Lai Y, Clark RS, Dixon CE, Jenkins LW. Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Dev Neurosci. 2006; 28(4-5):410-9.
Trapnell, C.; Hendrickson, D. G.; Sauvageau, M.; Goff, L.; Rinn, J. L.; Pachter, L., Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature biotechnology 2013, 31, (1), 46.
International Agency Research ON cancer (IARC), Volume 80, 120(233-245) 2016.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(Database issue):D447-52.
Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997; 275(5303):1129-32.
Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997; 275(5303):1132-6.
Karimi N, Bayat M, Haghani M, Saadi HF, Ghazipour GR. 2.45 GHz microwave radiation impairs learning, memory, and hippocampal synaptic plasticity in the rat. Toxicol Ind Health. 2018; 748233718798976.
Paulraj R, Behari J. Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagnetic biology and medicine. 2006; 25(1):61-70.
Maskey D, Kim M, Aryal B, Pradhan J, Choi IY, Park KS, Son T, Hong SY, Kim SB, Kim HG, Kim MJ. Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res. 2010; 1313:232-41.
Ammari M, Lecomte A, Sakly M, Abdelmelek H, de-Seze R. Exposure to GSM 900MHz electromagnetic fields affects cerebral cytochrome c oxidase activity. Toxicology. 2008; 250(1):70-4.
Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. International journal of molecular sciences. 2014; 15(4):5366-87.
- Abstract Viewed: 164 times
- PDF Downloaded: 117 times