• Logo
  • SBMUJournals

Molecular Imprinting of Peptides and Proteins

Fatemeh Ghorbani-Bidkorbeh
857

Views

PDF

Abstract

Molecular imprinting described as a method utilized to create artificial receptors and antibodies by construction of selective recognition sites in a synthetic polymer can be a promising tool for generating peptide and protein artificial specific recognition sites. These materials, as potential antibody substitutes, have attracted great interest and attention in different fields such as peptide and protein purification and separation, chemical/electrochemical/optical sensors/biosensors, chromatographic stationary phases, and enzyme mimics. This review has focused on fundamentals of molecularly imprinted polymers in terms of selection of molecular template, functional monomer, cross linker, and polymerization format. Furthermore, several applications of peptide/protein-imprinted materials are highlighted and challenges regarding the intrinsic properties of peptide/ protein imprinting have been emphasized.

Highlights

  • Highlights the fundamentals of peptides and proteins molecular imprinting.
  • Summarizes the essential elements and polymer formats of peptide/protein imprinted materials.
  • Highlights the applications of peptide/protein imprinting.
  • Highlights the challenges in peptide/protein imprinting.

Keywords

Molecular imprinting, Peptides and Proteins, Recognition, Artificial Antibodies

References

Alexander, C., Andersson, H. S., Andersson, L. I., Ansell, R. J., Kirsch, N., Nicholls, I. A., O'Mahony, J. and M.J. Whitcombe, (2006). "Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003." Journal of Molecular Recognition, 19 (2): 106-180.

Ambrosini, S., Beyazit, S., Haupt, K. and B. T. S. Bui, (2013). "Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition." Chemical Communications, 49 (60): 6746-6748.

Banerjee, S. and B. König (2013). "Molecular imprinting of luminescent vesicles." Journal of the American Chemical Society, 135 (8): 2967-2970.

Booker, K., Holdsworth, C. I., Doherty, C. M., Hill, A. J., Bowyer, M. C. and A. McCluskey, (2014). "Ionic liquids as porogens for molecularly imprinted polymers: propranolol, a model study." Organic and Biomolecular Chemistry, 12 (37): 7201-7210.

Cai, D., Ren, L., Zhao, H., Xu, C., Zhang, L., Yu, Y., Wang, H., Lan, Y., Roberts, M. F., Chuang, J. H. and M. J. Naughton, (2010). "A molecular-imprint nanosensor for ultrasensitive detection of proteins." Nature Nanotechnology, 5 (8): 597-601.

Castell, O. K., Barrow, D. A., Kamarudin, A. R. and C. J. Allender, (2011). "Current practices for describing the performance of molecularly imprinted polymers can be misleading and may be hampering the development of the field." Journal of Molecular Recognition, 24 (6): 1115-1122.

Chen, L., Wang, X., Lu, W., Wu, X. and J. Li, (2016). "Molecular imprinting: perspectives and applications." Chemical Society Reviews, 45 (8): 2137-2211.

Chen, L., Xu, S. and J. Li, (2011). "Recent advances in molecular imprinting technology: current status, challenges and highlighted applications." Chemical Society Reviews, 40 (5): 2922-2942.

Chen, Y. W., Rick, J. and T. C. Chou, (2009). "A systematic approach to forming micro-contact imprints of creatine kinase." Organic and Biomolecular Chemistry, 7 (3): 488-494.

Cutivet, A., Schembri, C., Kovensky, J. and K. Haupt, (2009). "Molecularly imprinted microgels as enzyme inhibitors." Journal of the American Chemical Society, 131 (41): 14699-14702.

Dai, H., Xiao, D., He, H., Li, H., Yuan, D. and C. Zhang, (2015). "Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review." Microchimica Acta, 182 (5-6): 893-908.

Dechtrirat, D., Jetzschmann, K. J., Stöcklein, W. F., Scheller, F. W. and N. Gajovic‐Eichelmann, (2012). "Protein rebinding to a surface-confined imprint." Advanced Functional Materials, 22 (24): 5231-5237.

El Kirat, K., Bartkowski, M. and K. Haupt, (2009). "Probing the recognition specificity of a protein molecularly imprinted polymer using force spectroscopy." Biosensors and Bioelectronics, 24 (8): 2618-2624.

Elmlund, L., Suriyanarayanan, S., Wiklander, J. G., Aastrup, T. and I. A. Nicholls, (2014). "Biotin selective polymer nano-films." Journal of Nanobiotechnology, 12 (1): 8, DOI: 10.1186/1477-3155-12-8.

Fang, C., Yi, C., Wang, Y., Cao, Y. and X. Liu, (2009). "Electrochemical sensor based on molecular imprinting by photo-sensitive polymers." Biosensors and Bioelectronics, 24 (10): 3164-3169.

Fasihi, J., Alahyari, S. A., Shamsipur, M., Sharghi, H. and A. Charkhi, (2011). "Adsorption of uranyl ion onto an anthraquinone based ion-imprinted copolymer." Reactive and Functional Polymers, 71 (8): 803-808.

Flavin, K. and M. Resmini (2009). "Imprinted nanomaterials: a new class of synthetic receptors." Analytical and Bioanalytical Chemistry, 393 (2): 437-444.

Fu, J., Chen, L., Li, J. and Z. Zhang, (2015). "Current status and challenges of ion imprinting." Journal of Materials Chemistry A, 3 (26): 13598-13627.

Gao, D., Zhang, Z., Wu, M., Xie, C., Guan, G. and D. Wang, (2007). "A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles." Journal of the American Chemical Society, 129 (25): 7859-7866.

Gladis, J. M. and T. P. Rao (2004). "Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/separation of traces of uranium." Microchimica Acta, 146 (3-4): 251-258.

Guo, T. Y., Xia, Y. Q., Wang, J., Song, M. D. and B. H. Zhang, (2005). "Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins." Biomaterials, 26 (28): 5737-5745.

Hayden, O. and F. L. Dickert (2001). "Selective microorganism detection with cell surface imprinted polymers." Advanced Materials, 13 (19): 1480-1483.

He, J., Lv, R., Cheng, J., Li, Y., Xue, J., Lu, K. and F. Wang, (2010). "Preparation and characterization of molecularly imprinted microspheres for dibutyl phthalate recognition in aqueous environment." Journal of Separation Science, 33 (21): 3409-3414.

Hjerten, S., Liao, J. L., Nakazato, K., Wang, Y., Zamaratskaia, G. and H. X. Zhang, (1997). "Gels mimicking antibodies in their selective recognition of proteins." Chromatographia, 44 (5-6): 227-234.

Hoshino, Y. and K. J. Shea (2011). "The evolution of plastic antibodies." Journal of Materials Chemistry, 21 (11): 3517-3521.

Huang, Y. P., Liu, Z. S., Zheng, C. and R. Y. Gao, (2009). "Recent developments of molecularly imprinted polymer in CEC." Electrophoresis, 30 (1): 155-162.

Kawamura, A., Kiguchi, T., Nishihata, T., Uragami, T. and T. Miyata, (2014). "Target molecule-responsive hydrogels designed via molecular imprinting using bisphenol A as a template." Chemical Communications, 50 (76): 11101-11103.

Kempe, M., Glad, M. and K. Mosbach, (1995). "An approach towards surface imprinting using the enzyme ribonuclease A." Journal of Molecular Recognition, 8 (1‐2): 35-39.

Li, D. Y., Qin, Y. P., Li, H. Y., He, X. W., Li, W. Y. and Y. K. Zhang, (2015). "A "turn-on" fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach." Biosensors and Bioelectronics, 66: 224-230.

Li, P., Wang, T., Lei, F., Tang, P., Tan, X., Liu, Z. and L. Shen, (2014). "Rosin‐based molecularly imprinted polymers as the stationary phase in high‐performance liquid chromatography for selective separation of berberine hydrochloride." Polymer International, 63 (9): 1699-1706.

Li, X., Li, M., Li, J., Lei, F., Su, X., Liu, M., Li, P. and X. Tan, (2014). "Synthesis and characterization of molecularly imprinted polymers with modified rosin as a cross-linker and selective SPE-HPLC detection of basic orange II in foods." Analytical Methods, 6 (16): 6397-6406.

Li, Y., Yang, H. H., You, Q. H., Zhuang, Z. X. and X. R. Wang, (2006). "Protein recognition via surface molecularly imprinted polymer nanowires." Analytical Chemistry, 78 (1): 317-320.

Li, Y., Zhou, W. H., Yang, H. H. and X. R. Wang, (2009). "Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization: A selective sorbent for theophylline." Talanta, 79 (2): 141-145.

Liang, R. N., Song, D. A., Zhang, R. M. and W. Qin, (2010). "Potentiometric Sensing of Neutral Species Based on a Uniform‐Sized Molecularly Imprinted Polymer as a Receptor." Angewandte Chemie International Edition, 49 (14): 2556-2559.

Lin, H. Y., Rick, J. and T. C. Chou, (2007). "Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer—formed using a micro-contact imprinting method." Biosensors and Bioelectronics, 22 (12): 3293-3301.

Lin, Z., Yang, F., He, X., Zhao, X. and Y. Zhang, (2009). "Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography." Journal of Chromatography A, 1216 (49): 8612-8622.

Liu, J., Deng, Q., Yang, K., Zhang, L., Liang, Z. and Y. Zhang, (2010). "Macroporous molecularly imprinted monolithic polymer columns for protein recognition by liquid chromatography." Journal of Separation Science, 33 (17‐18): 2757-2761.

Liu, J., Yang, K., Deng, Q., Li, Q., Zhang, L., Liang, Z. and Y. Zhang, (2011). "Preparation of a new type of affinity materials combining metal coordination with molecular imprinting." Chemical Communications, 47 (13): 3969-3971.

Liu, L., Zhong, T., Xu, Q. and Y. Chen, (2015). "Efficient Molecular Imprinting Strategy for Quantitative Targeted Proteomics of Human Transferrin Receptor in Depleted Human Serum." Analytical Chemistry, 87 (21): 10910-10919.

Lofgreen, J. E. and G. A. Ozin (2014). "Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica." Chemical Society Reviews, 43 (3): 911-933.

Lu, Y., Yan, C. L., Wang, X. J. and G. K. Wang, (2009). "Protein imprinting and recognition via forming nanofilms on microbeads surfaces in aqueous media." Applied Surface Science, 256 (5): 1341-1346.

Matsunaga, T., Hishiya, T. and T. Takeuchi, (2007). "Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films." Analytica Chimica Acta, 591 (1): 63-67.

Nematollahzadeh, A., Sun, W., Aureliano, C. S., Lütkemeyer, D., Stute, J., Abdekhodaie, M. J., Shojaei, A. and B. Sellergren, (2011). "High‐Capacity Hierarchically Imprinted Polymer Beads for Protein Recognition and Capture." Angewandte Chemie, 123 (2): 515-518.

Nicholls, I. A., Karlsson, B. C., Olsson, G. D. and A. M. Rosengren, (2013). "Computational strategies for the design and study of molecularly imprinted materials." Industrial and Engineering Chemistry Research, 52 (39): 13900-13909.

Nishino, H., Huang, C. S. and K. J. Shea, (2006). "Selective protein capture by epitope imprinting." Angewandte Chemie International Edition, 45 (15): 2392-2396.

Pan, G., Zhang, Y., Guo, X., Li, C. and H. Zhang, (2010). "An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization." Biosensors and Bioelectronics, 26 (3): 976-982.

Polyakov, M. and Z. Khim (1931). "Adsorption properties of silica gel and its structure." Russian Journal of Physical Chemistry B, 2 (6): 799-805.

Qin, L., He, X. W., Zhang, W., Li, W. Y. and Y. K. Zhang, (2009). "Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins." Journal of Chromatography A, 1216 (5): 807-814.

Qin, L., He, X. W., Jia, M., Li, W. Y. and Y. K. Zhang, (2011). "A Thermosensitive Monolithic Column as an Artificial Antibody for the On‐line Selective Separation of the Protein." Chemistry-a European Journal, 17 (5): 1696-1704.

Rachkov, A. and N. Minoura (2000). "Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach." Journal of Chromatography A, 889 (1): 111-118.

Rachkov, A. and N. Minoura (2001). "Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach." Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1544 (1): 255-266.

Reimhult, K., Yoshimatsu, K., Risveden, K., Chen, S., Ye, L. and A. Krozer, (2008). "Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles." Biosensors and Bioelectronics, 23 (12): 1908-1914.

Rossetti, C., Abdel Qader, A., Halvorsen, T. G., Sellergren, B. and L. Reubsaet, (2014). "Antibody-free biomarker determination: Exploring molecularly imprinted polymers for pro-gastrin releasing peptide." Analytical Chemistry, 86 (24): 12291-12298.

Rossetti, C., Levernæs, M. C., Reubsaet, L. and T. G. Halvorsen, (2016). "Evaluation of affinity-based serum clean-up in mass spectrometric analysis: Plastic vs monoclonal antibodies." Journal of Chromatography A, 1471: 19-26.

Saloni, J., Walker, K. and G. Hill Jr, (2013). "Theoretical investigation on monomer and solvent selection for molecular imprinting of nitrocompounds." The Journal of Physical Chemistry A, 117 (7): 1531-1534.

Saridakis, E., Khurshid, S., Govada, L., Phan, Q., Hawkins, D., Crichlow, G. V., Lolis, E., Reddy, S. M. and N. E. Chayen, (2011). "Protein crystallization facilitated by molecularly imprinted polymers." Proceedings of the National Academy of Sciences, 108 (27): 11081-11086.

Schirhagl, R., (2013). "Bioapplications for molecularly imprinted polymers." Analytical Chemistry, 86 (1): 250-261.

Scognamiglio, V., Antonacci, A., Lambreva, M. D., Litescu, S. C. and G. Rea, (2015). "Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors." Biosensors and Bioelectronics, 74: 1076-1086.

Sellergren, B., (2010). "Molecularly imprinted polymers: Shaping enzyme inhibitors." Nature Chemistry, 2: 7-8.

Shea, K. J. and D. Y. Sasaki (1991). "An analysis of small-molecule binding to functionalized synthetic polymers by 13C CP/MAS NMR and FT-IR spectroscopy." Journal of the American Chemical Society, 113 (11): 4109-4120.

Shi, H., Tsai, W. B., Garrison, M. D., Ferrari, S. and B. D. Ratner, (1999). "Template-imprinted nanostructured surfaces for protein recognition." Nature, 398 (6728): 593-597.

Su, W. X., Rick, J. and T. C. Chou, (2009). "Selective recognition of ovalbumin using a molecularly imprinted polymer." Microchemical Journal, 92 (2): 123-128.

Tai, D. F., Jhang, M. H., Chen, G. Y., Wang, S. C., Lu, K. H., Lee, Y. D. and H. T. Liu, (2010). "Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments." Analytical Chemistry, 82 (6): 2290-2293.

Tai, D. F., Lin, Y. F., Lu, K. H., Chen, G. Y. and H. C. Shu, (2012). "A direct immersion system for peptide enrichment." Journal of the Chinese Chemical Society, 59 (3): 338-344.

Takano, E., Taguchi, Y., Ooya, T. and T. Takeuchi, (2012). "Dummy template-imprinted polymers for bisphenol A prepared using a schiff base-type template molecule with post-imprinting oxidation." Analytical Letters, 45 (10): 1204-1213.

Takátsy, A., Kilár, A., Kilár, F. and and S. Hjertén, (2006). "Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses, and cells (bacteria): Ia. Gel antibodies against proteins (transferrins)." Journal of Separation Science, 29 (18): 2802-2809.

Takátsy, A., Végvári, Á., Hjertén, S. and F. Kilar, (2007). "Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses and cells (bacteria). Ib. Gel antibodies against proteins (hemoglobins)." Electrophoresis, 28 (14): 2345-2350.

Takeuchi, T. and T. Hishiya (2008). "Molecular imprinting of proteins emerging as a tool for protein recognition." Organic and Biomolecular Chemistry, 6 (14): 2459-2467.

Tan, C. J. and Y. W. Tong (2007). "The effect of protein structural conformation on nanoparticle molecular imprinting of ribonuclease A using miniemulsion polymerization." Langmuir, 23 (5): 2722-2730.

Tan, L., Yu, Z., Zhou, X., Xing, D., Luo, X., Peng, R. and Y. Tang, (2015). "Antibody-free ultra-high performance liquid chromatography/tandem mass spectrometry measurement of angiotensin I and II using magnetic epitope-imprinted polymers." Journal of Chromatography A, 1411: 69-76.

Tong, D., Heényi, C., Bikadi, Z., Gao, J. P. and S. Hjerten, (2001). "Some studies of the chromatographic properties of gels (‘artificial antibodies/receptors’) for selective adsorption of proteins." Chromatographia, 54 (1-2): 7-14.

Turan, E., Özçetin, G. and T. Caykara, (2009). "Dependence of Protein Recognition of Temperature‐Sensitive Imprinted Hydrogels on Preparation Temperature." Macromolecular Bioscience, 9 (5): 421-428.

Turner, N. W., Jeans, C. W., Brain, K. R., Allender, C. J., Hlady, V. and Britt, D. W. (2006). "From 3D to 2D: a review of the molecular imprinting of proteins." Biotechnology Progress, 22 (6): 1474-1489.

Valdebenito, A., Espinoza, P., Lissi, E. A. and M. V. Encinas, (2010). "Bovine serum albumin as chain transfer agent in the acrylamide polymerization. Protein-polymer conjugates." Polymer, 51 (12): 2503-2507.

Valero-Navarro, A., Salinas-Castillo, A., Fernández-Sánchez, J. F., Segura-Carretero, A., Mallavia, R. and A. Fernández-Gutiérrez, (2009). "The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water." Biosensors and Bioelectronics, 24 (7): 2305-2311.

Venton, D. L. and E. Gudipati (1995). "Entrapment of enzymes using organo-functionalized polysiloxane copolymers." Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1250 (2): 117-125.

Venton, D. L. and E. Gudipati (1995). "Influence of protein on polysiloxane polymer formation: evidence for induction of complementary protein-polymer interactions." Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1250 (2): 126-136.

Verheyen, E., Schillemans, J. P., van Wijk, M., Demeniex, M. A., Hennink, W. E. and C. F. van Nostrum, (2011). "Challenges for the effective molecular imprinting of proteins." Biomaterials, 32 (11): 3008-3020.

Walsh, R., Osmani, Q., Hughes, H., Duggan, P. and P. McLoughlin, (2011). "Synthesis of imprinted beads by aqueous suspension polymerisation for chiral recognition of antihistamines." Journal of Chromatography B, 879 (30): 3523-3530.

Wang, Y., Zhou, Y., Sokolov, J., Rigas, B., Levon, K. and M. Rafailovich, (2008). "A potentiometric protein sensor built with surface molecular imprinting method." Biosensors and Bioelectronics, 24 (1): 162-166.

Whitcombe, M. J., Kirsch, N. and I. A. Nicholls, (2014). "Molecular imprinting science and technology: a survey of the literature for the years 2004–2011." Journal of Molecular Recognition, 27 (6): 297-401.

Wu, H. G., Ju, X. J., Xie, R., Liu, Y. M., Deng, J. G., Niu, C. H. and L. Y. Chu, (2011). "A novel ion‐imprinted hydrogel for recognition of potassium ions with rapid response." Polymers for Advanced Technologies. 22 (9): 1389-1394.

Wulff, G., (2002). "Enzyme-like catalysis by molecularly imprinted polymers." Chemical reviews, 102 (1): 1-28.

Wulff, G., Vesper, W., Grobe‐Einsler, R. and A. Sarhan, (1977). "Enzyme‐analogue built polymers, 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates." Macromolecular Chemistry and Physics, 178 (10): 2799-2816.

Xie, C., Liu, B., Wang, Z., Gao, D., Guan, G. and Z. Zhang, (2008). "Molecular imprinting at walls of silica nanotubes for TNT recognition." Analytical Chemistry, 80 (2): 437-443.

Xu, W., Su, S., Jiang, P., Wang, H., Dong, X. and M. Zhang, (2010). "Determination of sulfonamides in bovine milk with column-switching high performance liquid chromatography using surface imprinted silica with hydrophilic external layer as restricted access and selective extraction material." Journal of Chromatography A, 1217 (46): 7198-7207.

Yan, H. and K. H. Row (2006). "Characteristic and synthetic approach of molecularly imprinted polymer." International journal of molecular Sciences, 7 (5): 155-178.

Yang, K., Zhang, L., Liang, Z. and Y. Zhang, (2012). "Protein-imprinted materials: rational design, application and challenges." Analytical and Bioanalytical Chemistry, 403 (8): 2173-2183.

Yang, Y. Q., He, X. W., Wang, Y. Z., Li, W. Y. and Zhang, Y. K. (2014). "Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin." Biosensors and Bioelectronics, 54: 266-272.

Ye, L. and K. Mosbach (2008). "Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors." Chemistry of Materials, 20 (3): 859-868.

Yoshimatsu, K., LeJeune, J., Spivak, D. A. and L. Ye, (2009). "Peptide-imprinted polymer microspheres prepared by precipitation polymerization using a single bi-functional monomer." Analyst, 134 (4): 719-724.

Zhang, W., He, X. W., Chen, Y., Li, W. Y. and Y. K. Zhang, (2011). "Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c." Biosensors and Bioelectronics, 26 (5): 2553-2558.

Zhang, Z., Li, J., Song, X., Ma, J. and L. Chen, (2014). "Hg 2+ ion-imprinted polymers sorbents based on dithizone–Hg 2+ chelation for mercury speciation analysis in environmental and biological samples." RSC Advances, 4 (87): 46444-46453.

Zhang, Z., Li, M., Ren, J. and X. Qu, (2015). "Cell‐Imprinted Antimicrobial Bionanomaterials with Tolerable Toxic Side Effects." Small, 11 (11): 1258-1264.

Zhao, H. L., Guo, T. Y., Xia, Y.Q. and Song, M. D. (2008). "Hemoglobin-imprinted polymer gel prepared using modified glucosamine as functional monomer." Chinese Chemical Letters, 19 (2): 233-236.




DOI: https://doi.org/10.22037/tpps.v1i3.16444

Refbacks

  • There are currently no refbacks.