Importance of Bioactive Peptides Derived from Cyanobacteria Bioactive peptides derived from cyanobacteria
Trends in Peptide and Protein Sciences,
Vol. 9 No. 1 (2024),
31 January 2024
,
Page 1-5 (e1)
https://doi.org/10.22037/tpps.v9i1.44444
Abstract
Cyanobacterial peptides are a group of promising natural therapeutic agents that have been extensively studied in recent years. They can be valuable pharmaceuticals or lead compounds in developing novel therapeutics for various diseases, especially cancers, infections, and neurodegenerative diseases, which are the most important challenges of medicine today.
HIGHLIGHTS
- Cyanobacteria are a valuable source of natural metabolites, including bioactive peptides.
- Cyanobacterial peptides include ribosomal synthesized and nonribosomal peptides (NRPs).
- Therapeutic applications of cyanobacterial peptides in different diseases have been reported.
- Antimicrobial
- Anticancer
- Cyanobacteria
- Neurodegenerative disease
- Peptides

How to Cite
References
Ahmad, I. Z., Parvez, S. and H. Tabassum, (2020). ″Chapter 10 - cyanobacterial peptides with respect to anticancer activity: structural and functional perspective.″ In: F.R.S. Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry. Elsevier. 67: 345-388. DOI: https://doi.org/10.1016/B978-0-12-819483-6.00010-2.
Ahmed, S., Alam, W., Aschner, M., Filosa, R., Cheang, W. S., Jeandet, P., Saso, L. and H. Khan, (2023). "Marine cyanobacterial peptides in neuroblastoma: search for better therapeutic options." Cancers, 15(9), 2515. DOI: https://doi.org/10.3390/cancers15092515.
Doraj, M., Emtyazjoo, M., Sadeghi, M.S., Soltani, N. and F.Z. Hargelani, (2023). "Protein hydrolysate from Anabaena sp. cultured in an optimized condition designed by RSM; insight into bioactive attributes." Algal Research, 70, 103026. DOI: https://doi.org/10.1016/j.algal.2023.103026.
Ehsani, M., Alizadeh, B., Mahboubi, A., Hosseinabadi, T. and M. Tabarzad, (2023). "Antioxidant and antimicrobial activities of peptide fractions derived from enzymatic digestion of Desmodesmus sp. protein extract." Trends in Peptide and Protein Sciences, 8(1): 1-8 (e8). DOI: https://doi.org/10.22037/tpps.v8i1.43836.
Gupta, A., Singh, P. R., Singh, A. P., Kumari, N., Jaiswal, J., Sahu, N., Mishra, S., Pathak, J. and R. P. Sinha, (2023). "Anticancer compounds from cyanobacteria and their implications in apoptosis." Current Protein and Peptide Science, 24(10): 805-819. DOI: https://doi.org/10.2174/1389203724666230411091726.
Guzmán, F., Wong, G., Román, T., Cárdenas, C., Alvárez, C., Schmitt, P., Albericio, F. and V. Rojas, (2019). "Identification of antimicrobial peptides from the microalgae tetraselmis suecica (Kylin) butcher and bactericidal activity improvement." Marine Drugs, 17(8), 453. DOI: https://doi.org/10.3390/md17080453.
Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell'Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J. and E. M. L. Janssen, (2021). "CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria." Water Research, 196: 117017. DOI: https://doi.org/10.1016/j.watres.2021.117017.
Kalaimathi, K., Prabhu, S., Ayyanar, M., Shine, K., Thiruvengadam, M. and S. Amalraj, (2023). "Cyanobacterial metabolites as novel inhibitors of BACE1 implicated in Alzheimer's disease through in silico approaches." Intelligent Pharmacy, In press. DOI: https://doi.org/10.1016/j.ipha.2023.10.002.
Nowruzi, B. and G. Afshari, (2023). "In silico analysis of molecular phylogeny of genes involved in the synthesis of bioactive compounds in cyanobacteria strains located in Tehran Cascade." Jentashapir Journal of Cellular and Molecular Biology, 14(1): e132400. DOI: https://doi.org/10.5812/jjcmb-132400.
Perera, R. M. T. D., Herath, K. H. I. N. M., Sanjeewa, K. K. A. and T. U. Jayawardena, (2023). "Recent reports on bioactive compounds from marine cyanobacteria in relation to human health applications." Life, 13(6), 1411. DOI: https://doi.org/10.3390/life13061411.
Raghunathan, S., Navabshan, I., Badar, B., Kim, J. W. and D. MubarakAli, (2023). "An investigation of algal peptides to target protein of lower respiratory tract infections: in silico approach." Biocatalysis and Agricultural Biotechnology, 47: 102585. DOI: https://doi.org/10.1016/j.bcab.2022.102585.
Sedighi, M., Jalili, H., Ranaei, S. S. O. and A. Amrane, (2016). "Potential health effects of enzymatic protein hydrolysates from Chlorella vulgaris." Applied Food Biotechnology, 3(3): 160-169. DOI: https://doi.org/10.22037/afb.v3i3.11306.
Slonimskiy, Y. B., Maksimov, E. G. and N. N. Sluchanko, (2020). "Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria." Photochemical & Photobiological Sciences, 19(6): 763-775. DOI: https://doi.org/10.1039/d0pp00015a.
Sun, Y., Chang, R., Li, Q. and B. Li, (2016). "Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis." European Food Research and Technology, 242(5): 685-692. DOI: https://doi.org/10.1007/s00217-015-2576-x.
Welker, M. and H. Von Döhren, (2006). "Cyanobacterial peptides — nature's own combinatorial biosynthesis." FEMS Microbiology Reviews, 30(4): 530-563. DOI: https://doi.org/10.1111/j.1574-6976.2006.00022.x.
Yu, Z., Lv, H., Zhou, M., Fu, P. and W. Zhao, (2024). "Identification and molecular docking of tyrosinase inhibitory peptides from allophycocyanin in Spirulina platensis." Journal of the Science of Food and Agriculture, In press. DOI: https://doi.org/10.1002/jsfa.13249.
- Abstract Viewed: 168 times
- PDF Downloaded: 148 times