The Relationship Between Janus Kinase Pathways and MicroRNAs
Trends in Peptide and Protein Sciences,
Vol. 1 No. 4 (2017),
3 September 2017
,
Page 144-152
https://doi.org/10.22037/tpps.v1i4.18122
Abstract
Janus Kinase (JAK) family is a group of four signaling enzymes composing of four distinct domains and involved in the intracellular pathways of cytokine downstream signaling. There are two kinase domains at C-terminal of protein, one of which is regulatory and the other has the main functionality in phosphorylation of target proteins. JAKs involve in the critical physiological processes, including immune response, growth, and differentiation. Mutations or malfunction of JAKs gene can result in pathological conditions like immuno-inflammatory diseases and malignancies. Targeting of JAK enzymes has been considered as effective therapeutic approaches in immuno-inflammatory disorders and different types of hematopoietic cancers or solid tumors. Rather than cytokines that are the natural modulators and the small chemical inhibitors developed as the therapeutic modulators of JAK enzymes, miRNAs can exert regulatory activity on JAKs. miRNAs are valuable biomarkers and regulatory elements of different pathophysiological conditions, particularly cancers. The relationships between JAK enzymes and miRNA are bi-directional, as the JAKs activity through JAK-STAT pathway as well as some other non-STAT pathways, control the expressions of various genes. These connections help scientists to design and develop novel therapeutic agents and predict the prognosis of disease following therapeutic regimens, based on these two critical components of cell biology.
HIGHLIGHTS
•Janus kinase family consists of four signaling enzymes involved in cytokine signaling pathways.
•Modifications of JAK enzymes resulted in various pathological conditions.
•JAK2 modification is reported in several types of cancers.
•JAK modulators have been approved by FDA for treatment of several immunological and neoplastic disorders.
- Cancer
- Janus Kinase
- Immune disease
- miRNA
- Signaling Network
How to Cite
References
Abroun, S., Saki, N., Ahmadvand, M., Asghari, F., Salari, F. and F. Rahim, (2015). "STATs: an old story, yet mesmerizing." Cell Journal (Yakhteh), 17(3): 395-411.
Aittomäki, S. and M. Pesu, (2014). "Therapeutic targeting of the Jak/STAT pathway." Basic & Clinical Pharmacology & Toxicology, 114(1): 18-23.
Babon, J. J., Lucet, I. S., Murphy, J. M., Nicola, N. A. and L. N. Varghese, (2014). "The molecular regulation of Janus kinase (JAK) activation." Biochemical Journal, 462(1): 1-13.
Bandaranayake, R. M., Ungureanu, D., Shan, Y., Shaw, D. E., Silvennoinen, O. and S. R. Hubbard, (2012). "Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F." Nature Structural & Molecular Biology, 19(8): 754-759.
Celtikci, B., Carson, R., Johnston, P. G. and S. Van Schaeybroeck, (2014). "The role of JAK1/2-STAT3 as acute resistance mechanism to MEK inhibition in BRAF-mutant colorectal cancer cell lines. " Journal of Clinical Oncology, 32(15_suppl): 3594-3594.
Chen, X., Du, Y., Nan, J., Zhang, X., Qin, X., Wang, Y., Hou, J., Wang, Q. and J. Yang, (2013). "Brevilin A, a novel natural product, inhibits janus kinase activity and blocks STAT3 signaling in cancer cells." PLoS One, 8(5): e63697.
Chen, Y., Surinkaew, S., Xiao, J., Wu, C. T., Huang, H., Sun, Y., Dobrev, D. and S. Nattel, (2015). "MicroRNA Regulation of JAK-STAT System in the Atrial Fibrillation-Related Fibrotic Response." Circulation, 132(Suppl 3): A12229.
Chuang, C. H., Greenside, P. G., Rogers, Z. N., Brady, J. J., Yang, D., Ma, R. K., Caswell, D. R., Chiou, S. H., Winters, A. F. and B. M. Grüner, (2017). "Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis." Nature Medicine, 23(3): 291-300.
Damsky, W. and B. A. King, (2017). "JAK inhibitors in dermatology: The promise of a new drug class." Journal of the American Academy of Dermatology, 76(4): 736-744.
Dinman, J. D., Khan, Y. A., Advani, V. M. and Z. R. Flickenger, (2016). "The JAK-STAT pathway is regulated by miRNA mediated Ribosomal Frameshifting." The FASEB Journal, 30(1 Supplement): 1060.1061.
Eichmüller, S. B., Osen, W., Mandelboim, O. and B. Seliger, (2017). "Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape." JNCI: Journal of the National Cancer Institute, 109(10): djx034.
Gigante, M., Pontrelli, P., Herr, W., Gigante, M., D’Avenia, M., Zaza, G., Cavalcanti, E., Accetturo, M., Lucarelli, G. and G. Carrieri, (2016). "miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction." Journal of Translational Medicine, 14(1): 84.
Haan, C., Rolvering, C., Raulf, F., Kapp, M., Drückes, P., Thoma, G., Behrmann, I. and H. G. Zerwes, (2011). "Jak1 Has a Dominant Role over Jak3 in Signal Transduction through γc-Containing Cytokine Receptors." Chemistry & Biology, 18(3): 314-323.
Handle, F., Erb, H. H., Luef, B., Hoefer, J., Dietrich, D., Parson, W., Kristiansen, G., Santer, F. R. and Z. Culig, (2016). "The bi-directional interaction of AR and IL6 signalling in the response to enzalutamide in prostate cancer cells." Endocrine Abstracts, 42: P6.
Hao, N., He, Y., Li, X., Wang, K. and R. Wang, (2017). "The role of miRNA and lncRNA in gastric cancer." Oncotarget, doi: 10.18632/oncotarget.19197.
Hayes, J., Peruzzi, P. P. and S. Lawler, (2014). "MicroRNAs in cancer: biomarkers, functions and therapy." Trends in Molecular Medicine, 20(8): 460-469.
Karantanos, T. and V. A. Boussiotis, (2016). "JAK3-mediated phosphorylation of EZH2: a novel mechanism of non-canonical EZH2 activation and oncogenic function." Translational Cancer Research, 5(6): S1208-S1211.
Kaushik, N., Kim, M. J., Kim, R. K., Kaushik, N. K., Seong, K. M., Nam, S. Y. and S. J. Lee, (2017). "Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines." Scientific Reports, 7: 43361.
Kettle, J. G., Åstrand, A., Catley, M., Grimster, N. P., Nilsson, M., Su, Q. and R. Woessner, (2017). "Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 1." Expert Opinion on Therapeutic Patents, 27(2): 127-143.
Kettle, J. G., Åstrand, A., Catley, M., Grimster, N. P., Nilsson, M., Su, Q. and R. Woessner, (2017). "Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 2." Expert Opinion on Therapeutic Patents, 27(2): 145-161.
Kim, Y. H., Chung, J. I., Woo, H. G., Jung, Y. S., Lee, S. H., Moon, C. H., Suh‐Kim, H. and E. J. Baik, (2010). "Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway." Stem Cells, 28(10): 1816-1828.
Kurdi, M. and G. W. Booz, (2009). "JAK redux: a second look at the regulation and role of JAKs in the heart." American Journal of Physiology-Heart and Circulatory Physiology, 297(5): H1545-H1556.
Lam, D., Barré, B., Guette, C. and O. Coqueret, (2013). "Circulating miRNAs as new activators of the JAK-STAT3 pathway." JAK-STAT, 2(1): 3513-3523.
Leroy, E. and S. N. Constantinescu, (2017). "Rethinking JAK2 inhibition: Towards novel strategies of more specific and versatile janus kinase inhibition." Leukemia, 31(5): 1023-1038.
Lin, S. and R. I. Gregory, (2015). "MicroRNA biogenesis pathways in cancer." Nature Reviews Cancer, 15(6): 321-333.
Liu, L., Gaboriaud, N., Vougogianopoulou, K., Tian, Y., Wu, J., Wen, W., Skaltsounis, L. and R. Jove, (2014). "MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells." Cancer Biology & Therapy, 15(2): 178-184.
Mohan, C. D., Bharathkumar, H., Bulusu, K. C., Pandey, V., Rangappa, S., Fuchs, J. E., Shanmugam, M. K., Dai, X., Li, F. and A. Deivasigamani, (2014). "Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo." Journal of Biological Chemistry, 289(49): 34296-34307.
Murray, P. J. (2007). "The JAK-STAT signaling pathway: input and output integration." The Journal of Immunology, 178(5): 2623-2629.
O'Shea, J. J., Gadina, M. and R. D. Schreiber, (2002). "Cytokine Signaling in 2002." Cell, 109(2): S121-S131.
O'shea, J. J., Holland, S. M. and L. M. Staudt, (2013). "JAKs and STATs in immunity, immunodeficiency, and cancer." New England Journal of Medicine, 368(2): 161-170.
O'Shea, J. J., Schwartz, D. M., Villarino, A. V., Gadina, M., McInnes, I. B. and A. Laurence, (2015). "The JAK-STAT pathway: impact on human disease and therapeutic intervention." Annual Review Of Medicine, 66: 311-328.
Rui, L., Drennan, A. C., Ceribelli, M., Zhu, F., Wright, G. W., Huang, D. W., Xiao, W., Li, Y., Grindle, K. M. and L. Lu, (2016). "Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma." Proceedings of the National Academy of Sciences, 113(46): E7260-E7267.
Song, B., Zhan, H., Bian, Q. and J. Gu, (2016). "Piperlongumine inhibits gastric cancer cells via suppression of the JAK1, 2/STAT3 signaling pathway." Molecular Medicine Reports, 13(5): 4475-4480.
Springuel, L., Hornakova, T., Losdyck, E., Lambert, F., Leroy, E., Constantinescu, S. N., Flex, E., Tartaglia, M., Knoops, L. and J. C. Renauld, (2014). "Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors." Blood, 124(26): 3924-3931.
Su, R., Dong, L., Zou, D., Zhao, H., Ren, Y., Li, F., Yi, P., Li, L., Zhu, Y. and Y. Ma, (2016). "microRNA-23a,-27a and-24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia." Oncogene, 35(46): 6001-6014.
Talebi, F., Ghorbani, S., Chan, W. F., Boghozian, R., Masoumi, F., Ghasemi, S., Vojgani, M., Power, C. and F. Noorbakhsh, (2017). "MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis." Journal of neuroinflammation, 14(1): 55. doi: 10.1186/s12974-017-0832-7.
Tan, L., Akahane, K., McNally, R., Reyskens, K. M., Ficarro, S. B., Liu, S., Herter-Sprie, G. S., Koyama, S., Pattison, M. J. and K. Labella, (2015). "Development of selective covalent janus kinase 3 inhibitors." Journal of Medicinal Chemistry, 58(16): 6589-6606.
Thomas, S., Snowden, J., Zeidler, M. and S. Danson, (2015). "The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours." British Journal of Cancer, 113(3): 365-371.
Valle-Mendiola, A., Weiss-Steider, B., Rocha-Zavaleta, L. and I. Soto-Cruz, (2014). "IL-2 enhances cervical cancer cells proliferation and JAK3/STAT5 phosphorylation at low doses, while at high doses IL-2 has opposite effects." Cancer Investigation, 32(4): 115-125.
Van Allen, E. M., Golay, H. G., Liu, Y., Koyama, S., Wong, K., Taylor-Weiner, A., Giannakis, M., Harden, M., Rojas-Rudilla, V. and A. Chevalier, (2015). "Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation." Cancer Immunology Research, 3(8): 855-863.
Wang, S., Chen, X. and M. Tang, (2014). "MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2." Oncology Reports, 32(6): 2824-2830.
Wang, X., Qiu, W., Zhang, G., Xu, S., Gao, Q. and Z. Yang, (2015). "MicroRNA-204 targets JAK2 in breast cancer and induces cell apoptosis through the STAT3/BCl-2/survivin pathway." International Journal of Clinical and Experimental Pathology, 8(5): 5017-5025.
Wang, Y., Han, Z., Fan, Y., Zhang, J., Chen, K., Gao, L., Zeng, H., Cao, J. and C. Wang, (2017). "MicroRNA-9 Inhibits NLRP3 Inflammasome Activation in Human Atherosclerosis Inflammation Cell Models through the JAK1/STAT Signaling Pathway." Cellular Physiology and Biochemistry, 41(4): 1555-1571.
Watson, C. and K. Hughes, (2014). "Breast cancer: the menacing face of Janus kinase." Cell Death and Differentiation, 21(2): 185-186.
Wei, R., Yang, Q., Han, B., Li, Y., Yao, K., Yang, X., Chen, Z., Yang, S., Zhou, J. and M. Li, (2017). "microRNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways." Oncotarget, 8(10): 16633-16641.
Wen, W., Liang, W., Wu, J., Kowolik, C. M., Buettner, R., Scuto, A., Hsieh, M. Y., Hong, H., Brown, C. E. and S. J. Forman, (2014). "Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer." Molecular Cancer Therapeutics, 13(12): 3037-3048.
Witte, S. and S. A. Muljo, (2014). "Integrating non-coding RNAs in JAK-STAT regulatory networks." JAK-STAT, 3(1): e28055.
Wu, C., Zhang, J., Liu, T., Jiao, G., Li, C. and B. Hu, (2016). "Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway." Chinese Journal of Cellular and Molecular Immunology, 32(6): 784-788.
Wu, H., Huang, M., Cao, P., Wang, T., Shu, Y. and P. Liu, (2012). "MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation." Cancer Biology and Therapy, 13(5): 281-288.
Wu, P., Nielsen, T. E. and M. H. Clausen, (2015). "FDA-approved small-molecule kinase inhibitors." Trends in Pharmacological Sciences, 36(7): 422-439.
Xie, X. J., Fan, D. M., Xi, K., Chen, Y. W., Qi, P. W., Li, Q. H., Fang, L. and L. G. Ma, (2017). "Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia." Bioscience Reports: BSR20170186, doi: 10.1042/BSR20170186.
Yamaoka, K. (2016). "Janus kinase inhibitors for rheumatoid arthritis." Current Opinion in Chemical Biology, 32: 29-33.
Yu, D. L., Zhang, T., Wu, K., Li, Y., Wang, J., Chen, J., Li, X. Q., Peng, X. G., Wang, J. N. and L. G. Tan, (2017). "MicroRNA-448 suppresses metastasis of pancreatic ductal adenocarcinoma through targeting JAK1/STAT3 pathway." Oncology Reports, 38(2): 1075-1082.
Yuan, J., Ji, H., Xiao, F., Lin, Z., Zhao, X., Wang, Z., Zhao, J. and J. Lu, (2017). "MicroRNA-340 inhibits the proliferation and invasion of hepatocellular carcinoma cells by targeting JAK1." Biochemical and Biophysical Research Communications, 483(1): 578-584.
Zhang, M., Liu, Q., Mi, S., Liang, X., Zhang, Z., Su, X., Liu, J., Chen, Y., Wang, M., Zhang, Y., Guo, F., Zhang, Z. and R. Yang, (2011). "Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression." Journal of Immunology, 186(8): 4716-4724.
Zhang, Q., Huang, C., Yang, Q., Gao, L., Liu, H. C., Tang, J. and W. H. Feng, (2016). "MicroRNA-30c modulates type I IFN responses to facilitate porcine reproductive and respiratory syndrome virus infection by targeting JAK1." The Journal of Immunology, 196(5): 2272-2282.
Zhou, W., Bi, X., Gao, G. and L. Sun, (2016). "miRNA-133b and miRNA-135a induce apoptosis via the JAK2/STAT3 signaling pathway in human renal carcinoma cells." Biomedicine & Pharmacotherapy, 84: 722-729.
- Abstract Viewed: 869 times
- PDF Downloaded: 380 times