EGFR Targeted Nanocarriers for Cancer Diagnosis and Therapy
Trends in Peptide and Protein Sciences,
Vol. 1 No. 2 (2016),
17 January 2017
,
Page 41-55
https://doi.org/10.22037/tpps.v1i2.13611
Abstract
Conventional cancer management is directly associated with many problems, including accurate therapeutic delivery to tumours and serious side effects of chemotherapeutics. A specific and efficient anticancer delivery to the tumour site without damaging normal tissues is the ultimate goal of all cancer treatment strategies. Nanomedicine has immense potential for cancer therapy that focuses on improving treatment efficacy, while reducing toxicity to normal tissues as well. However, the biodistribution and targeting capability of nanoparticles lacking targeting ligands rely solely on their physicochemical properties and the pathophysiological parameters of the body. Targeting is a promising strategy for selective and efficient therapeutic delivery to tumour cells with reduced detrimental side effects. Taking advantage of the fact that molecular markers and receptors over-express on the tumour cell surface as compared to a normal cell, the active targeting approach would be beneficial for cancer therapy. The epidermal growth factor receptors (EGFR), abnormally overexpressed in many epithelial tumours, have received much attention for molecular targeting in cancer diagnostics and therapeutics. This review presents the role of EGFR targeting in cancer imaging and therapy, and some recent researches on treatment of EGFR overexpressing cancers by using targeted nanoparticulate platforms. It also discusses illustrative examples of various ligands, including antibodies, antibody fragments, nanobodies, and peptides.
Highlights
- Highlights the potential of EGFR targeted nanocarriers for cancer diagnosis and therapy.
- Summarizes the role of EGFR targeting in cancer therapy.
- Describes various examples of recent researches on EGFR targeted nanocarriers.
- Explains illustrative examples of various ligands for EGFR targeting.
- Cancer
- EGFR
- Ligand
- Nanocarrier
- Targeting
How to Cite
References
Abourbeh, G., Shir, A., Mishani, E., Ogris, M., Rodl, W., Wagner, E. and A. Levitzki, (2012). "PolyIC GE11 polyplex inhibits EGFR-overexpressing tumors. " IUBMB Life, 64(4): 324-330.
Aggarwal, S., Gupta, S., Pabla, D. and R. S. Murthy, (2013). "Gemcitabine-loaded PLGA-PEG immunonanoparticles for targeted chemotherapy of pancreatic cancer. " Cancer Nanotechnology, 4(6): 145-157.
Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B. and M. Hamid, (2012). "scFv antibody: principles and clinical application." Clinical and Developmental Immunology, 2012, 980250.
Allen, T. M. (2002). "Ligand-targeted therapeutics in anticancer therapy. " Nature Reviews Cancer, 2(10): 750-763.
Aslan, B., Ozpolat, B., Sood, A. K. and G. Lopez-Berestein, (2013). "Nanotechnology in cancer therapy." Journal of Drug Targeting, 21(10): 904-913.
Babu, A., Templeton, A. K., Munshi, A. and R. Ramesh, (2014). "Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer." AAPS PharmSciTech, 15(3): 709- 721.
Bertrand, N., Wu, J., Xu, X., Kamaly, N. and O.C. Farokhzad, (2014). "Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology." Advanced Drug Delivery Reviews, 66: 2-25.
Bhirde, A. A., Patel, V., Gavard, J., Zhang, G., Sousa, A. A., Masedunskas, A., Leapman, RD., Weigert, R., Gutkind, JS. and J.F. Rusling, (2009). "Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery." ACS Nano, 3(2): 307-316.
Bian, X., Wu, P., Sha, H., Qian, H., Wang, Q., Cheng, L., Yang, Y., Yang, M. and B. Liu, (2016). "Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency." Journal of OncoTargets and Therapy, 9: 3153- 3162.
Bohl Kullberg, E., Bergstrand, N., Carlsson, J., Edwards, K., Johnsson, M., Sjoberg, S. and L. Gedda, (2002). "Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents." Bioconjugate Chemistry, 13(4): 737-743.
Bray, F., Jemal, A., Grey, N., Ferlay, J. and D. Forman, (2012). "Global cancer transitions according to the Human Development Index (2008-2030): a population-based study." The Lancet Oncology, 13(8): 790-801.
Bregoli, L., Movia, D., Gavigan-Imedio, J. D., Lysaght, J., Reynolds, J. and A. Prina-Mello, (2016). "Nanomedicine applied to translational oncology: A future perspective on cancer treatment." Nanomedicine, 12(1): 81-103.
Brinkman, A. M., Chen, G., Wang, Y., Hedman, C. J., Sherer, N. M., Havighurst, T. C., Gong, S.,and W. Xu, (2016). "Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer." Biomaterials, 101: 20-31.
Bunuales, M., Duzgunes, N., Zalba, S., Garrido, M. J.and C. T. de Ilarduya, (2011). "Efficient gene delivery by EGF-lipoplexes in vitro and in vivo." Nanomedicine (London), 6(1): 89-98.
Cao, W., Gu, Y., Meineck, M. and H. Xu, (2014). "The combination of chemotherapy and radiotherapy towards more efficient drug delivery." Chemistry – An Asian Journal, 9(1): 48-57.
Capdevila, J., Elez, E., Macarulla, T., Ramos, F. J., Ruiz-Echarri, M. and J. Tabernero, (2009). "Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment." Cancer Treatment Reviews, 35(4): 354-363.
Chakravarty, R., Goel, S. and W. Cai, (2014). "Nanobody: the "magic bullet" for molecular imaging?" Theranostics, 4(4): 386-398.
Cheng, L., Huang, F. Z., Cheng, L. F., Zhu, Y. Q., Hu, Q., Li, L., Wei, L. and D. W. Chen, (2014). "GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation." International Journal of Nanomedicine, 9: 921-935.
Cheng, W. W. and T. M. Allen, (2008). "Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab' fragments and single chain Fv." Journal of Controlled Release, 126(1): 50-58.
Chow, E. K. and D. Ho, (2013). "Cancer nanomedicine: from drug delivery to imaging." Science Translational Medicine, 5(216): 216rv214.
Dassonville, O., Bozec, A., Fischel, J. L. and G. Milano, (2007). "EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors. Similarities and differences." Critical Reviews in Oncology/Hematology, 62(1): 53-61.
Diagaradjane, P., Orenstein-Cardona, J. M., Colon-Casasnovas, N. E., Deorukhkar, A., Shentu, S., Kuno, N., Schwartz, DL., Gelovani, JG. and S. Krishnan, (2008). "Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe." Clinical Cancer Research, 14(3): 731-741.
Estanqueiro, M., Amaral, M. H., Conceicao, J. and J. M. Sousa Lobo, (2015). "Nanotechnological carriers for cancer chemotherapy: the state of the art." Colloids and Surfaces B: Biointerfaces, 126: 631-648.
Fan, M., Liang, X., Yang, D., Pan, X., Li, Z., Wang, H. and B. Shi, (2016). "Epidermal growth factor receptor-targeted peptide conjugated phospholipid micelles for doxorubicin delivery." Journal of Drug Targeting, 24(2): 111-119.
Friedlander, E., Barok, M., Szollosi, J. and G. Vereb, (2008). "ErbB-directed immunotherapy: antibodies in current practice and promising new agents." Immunology Letters, 116(2): 126-140.
Gao, J., Yu, Y., Zhang, Y., Song, J., Chen, H., Li, W., Qian, W., Deng, L., Kou, G., Chen, J. and Y. Guo, (2012). "EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma." Biomaterials, 33(1): 270-282.
Goffin, J. R. and K. Zbuk, (2013). "Epidermal growth factor receptor: pathway, therapies, and pipeline." Clinical Therapeutics, 35(9): 1282-1303.
Greish, K. (2010). "Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting." Methods in Molecular Biology, 624: 25-37.
Haeri, A., Zalba, S., Ten Hagen, T. L., Dadashzadeh, S. and G.A. Koning, (2016). "EGFR targeted thermosensitive liposomes: A novel multifunctional platform for simultaneous tumor targeted and stimulus responsive drug delivery." Colloids and Surfaces B: Biointerfaces, 146: 657-669.
Harding, J. and B. Burtness, (2005). "Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody." Drugs of Today (Barc), 41(2): 107-127.
Herbst, R. S. (2004). "Review of epidermal growth factor receptor biology." International Journal of Radiation Oncology Biology Physics, 59(2 Suppl): 21-26.
Huang, J., Wang, L., Lin, R., Wang, A. Y., Yang, L., Kuang, M., Weiping, Q. and H. Mao, (2013). "Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting." ACS Applied Materials & Interfaces, 5(11): 4632-4639.
Hur, B. U., Yoon, J. B., Liu, L. K. and S. H. Cha, (2010). "Isolation of a human anti-epidermal growth factor receptor Fab antibody, EG-19- 11, with subnanomolar affinity from naive immunoglobulin repertoires using a hierarchical antibody library system." Immunology Letters, 134(1): 55-61.
Hynes, N. E., and H. A. Lane, (2005). "ERBB receptors and cancer: the complexity of targeted inhibitors." Nature Reviews Cancer, 5(5): 341-354.
Jung, J., Jeong, S. Y., Park, S. S., Shin, S. H., Ju, E. J., Choi, J., Park, J., Lee, JH., Kim, I., Suh, YA., Hwang, JJ., Kuroda, S., Lee, JS., Song, SY. and EK. Choi, (2015). "A cisplatinincorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity." International Journal of Oncology, 46(3): 1268-1274.
Kaluzova, M., Bouras, A., Machaidze, R. and C. G. Hadjipanayis, (2015). "Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles." Oncotarget, 6(11): 8788-8806.
Kamat, V., Donaldson, J. M., Kari, C., Quadros, M. R., Lelkes, P. I., Chaiken, I., Cocklin, S., Williams, JC., Papazoglou, E. and U. Rodeck, (2008). "Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425." Cancer Biology & Therapy, 7(5): 726-733.
Kao, H. W., Lin, Y. Y., Chen, C. C., Chi, K. H., Tien, D. C., Hsia, C. C., Lin, WJ., Chen, F. D., Lin, M. H. and H. E. Wang,. (2014). "Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model." Nanotechnology, 25(29): 295102.
Kawamoto, T., Sato, J. D., Le, A., Polikoff, J., Sato, G. H. and J. Mendelsohn, (1983). "Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody." Proceedings of the National Academy of Sciences USA, 80(5): 1337-1341.
Keating, G. M. (2010). "Panitumumab: a review of its use in metastatic colorectal cancer." Drugs, 70(8): 1059-1078.
Kijanka, M., Dorresteijn, B., Oliveira, S. and P. M. van Bergen en Henegouwen, (2015). "Nanobody-based cancer therapy of solid tumors." Nanomedicine (London), 10(1): 161-174.
Kim, B. Y., Rutka, J. T. and W. C. Chan, (2010). "Nanomedicine." The New England Journal of Medicine, 363(25): 2434-2443.
Kim, E. S., Khuri, F. R. and R. S. Herbst, (2001). "Epidermal growth factor receptor biology (IMC-C225)." Current Opinion in Oncology, 13(6): 506-513.
Kirtane, A. R., Wong, H. L., Guru, B. R., Lis, L. G., Georg, G. I., Gurvich, V. J. and J. Panyam, (2015). "Reformulating Tylocrebrine in Epidermal Growth Factor Receptor Targeted Polymeric Nanoparticles Improves Its Therapeutic Index." Molecular Pharmacology, 12(8): 2912-2923.
Kooijmans, S. A., Fliervoet, L. A., van der Meel, R., Fens, M. H., Heijnen, H. F., van Bergen En Henegouwen, P. M., Vader, P. and R. M. Schiffelers, (2016). "PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time." Journal of Controlled Release, 224: 77-85.
Kraft, J. C., Freeling, J. P., Wang, Z. and R. J. Ho, (2014). "Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems." Journal of Pharmaceutical Sciences, 103(1): 29-52.
Kutty, R. V., Chia, S. L., Setyawati, M. I., Muthu, M. S., Feng, S. S. and D.T. Leong, (2015). "In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer." Biomaterials, 63: 58-69.
Kutty, R. V. and S. S. Feng, (2013). "Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers." Biomaterials, 34(38): 10160-10171.
Labianca, R., La Verde, N. and M. C. Garassino, (2007). "Development and clinical indications of cetuximab." International Journal of Biological Markers, 22(1 Suppl 4): S40-46.
Lehner, R., Wang, X., Marsch and S. P. Hunziker, (2013). "Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application." Nanomedicine, 9(6): 742-757.
Leung, S. L., Zha, Z., Cohn, C., Dai, Z. and X. Wu, (2014). "Anti- EGFR antibody conjugated organic-inorganic hybrid lipid nanovesicles selectively target tumor cells." Colloids and Surfaces B: Biointerfaces, 121: 141-149.
Li, S., Goins, B., Hrycushko, B. A., Phillips, W. T. and A. Bao, (2012). "Feasibility of eradication of breast cancer cells remaining in postlumpectomy cavity and draining lymph nodes following intracavitary injection of radioactive immunoliposomes." Molecular Pharmacology, 9(9): 2513-2522.
Li, Z., Zhao, R., Wu, X., Sun, Y., Yao, M., Li, J., Yuhong, X. and J. Gu, (2005). "Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics." FASEB Journal, 19(14): 1978-1985.
Liao, C., Sun, Q., Liang, B., Shen, J. and X. Shuai, (2011). "Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide." European Journal of Radiology, 80(3): 699-705.
Limasale, Y. D., Tezcaner, A., Ozen, C., Keskin, D. and S. Banerjee, (2015). "Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells." International Journal of Pharmaceutics, 479(2): 364-373.
Lin, W. J. and L. T. Kao, (2014). "Cytotoxic enhancement of hexapeptide-conjugated micelles in EGFR high-expressed cancer cells." Expert Opinion on Drug Delivery, 11(10): 1537-1550.
Long, J. T., Cheang, T. Y., Zhuo, S. Y., Zeng, R. F., Dai, Q. S., Li, H. P. and S. Fang, (2014). "Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis." Journal of Nanobiotechnology, 12: 37.
Markman, J. L., Rekechenetskiy, A., Holler, E. and J. Y. Ljubimova, (2013). "Nanomedicine therapeutic approaches to overcome cancer drug resistance." Advanced Drug Delivery Reviews, 65(13-14): 1866-1879.
Master, A., Malamas, A., Solanki, R., Clausen, D. M., Eiseman, J. L. and A. Sen Gupta, (2013). "A cell-targeted photodynamic nanomedicine strategy for head and neck cancers." Molecular Pharmacology, 10(5): 1988-1997.
Mattheolabakis, G., Rigas, B. and P. P. Constantinides, (2012). "Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives." Nanomedicine (London), 7(10): 1577-1590.
Maya, S., Kumar, L. G., Sarmento, B., Sanoj Rejinold, N., Menon, D., Nair, S. V. and R. Jayakumar, (2013). "Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells." Carbohydrate Polymers, 93(2): 661-669.
Mir, Y., Elrington, S. A. and T. Hasan, (2013). "A new nanoconstruct for epidermal growth factor receptor-targeted photo-immunotherapy of ovarian cancer." Nanomedicine, 9(7): 1114-1122.
Nehoff, H., Parayath, N. N., Domanovitch, L., Taurin, S. and K. Greish, (2014). "Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect." International Journal of Nanomedicine, 9: 2539-2555.
Nishikawa, K., Asai, T., Shigematsu, H., Shimizu, K., Kato, H., Asano, Y., Takashima, S., Mekada, E., Oku, N. and T. Minamino, (2012). "Development of anti-HB-EGF immunoliposomes for the treatment of breast cancer." Journal of Controlled Release, 160(2): 274-280.
Okamoto, A., Asai, T., Kato, H., Ando, H., Minamino, T., Mekada, E. and N. Oku, (2014). "Antibody-modified lipid nanoparticles for selective delivery of siRNA to tumors expressing membrane-anchored form of HB-EGF." Biochemical and Biophysical Research Communications, 449(4): 460-465.
Oliveira, S., Heukers, R., Sornkom, J., Kok, R. J. and P. M. van Bergen En Henegouwen, (2013). "Targeting tumors with nanobodies for cancer imaging and therapy." Journal of Controlled Release, 172(3): 607-617.
Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R. and R. Langer, (2007). "Nanocarriers as an emerging platform for cancer therapy." Nature Nanotechnology, 2(12): 751-760.
Peng, X. H., Wang, Y., Huang, D., Wang, Y., Shin, H. J., Chen, Z., Spewak, M. B., Mao, H., Wang, X., Wang, Y., Chen, Z. G., Nie, S. and D. M. Shin, (2011). "Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles." ACS Nano, 5(12): 9480- 9493.
Perez-Herrero, E. and A. Fernandez-Medarde, (2015). "Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy." European Journal of Pharmaceutics and Biopharmaceutics, 93: 52-79.
Petrelli, F., Coinu, A., Riboldi, V., Borgonovo, K., Ghilardi, M., Cabiddu, M., Lonati, V., Sarti, E and S. Barni, (2014). "Concomitant platinum-based chemotherapy or cetuximab with radiotherapy for locally advanced head and neck cancer: a systematic review and meta-analysis of published studies." Oral Oncology, 50(11): 1041-1048.
Petschauer, J. S., Madden, A. J., Kirschbrown, W. P., Song, G. and W. C. Zamboni, (2015). "The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents." Nanomedicine (London), 10(3): 447-463.
Pirker, R. (2013). "EGFR-directed monoclonal antibodies in non-small cell lung cancer." Targeted Oncology, 8(1): 47-53.
- Abstract Viewed: 1076 times
- PDF Downloaded: 394 times