Principles of Glycerol-Based Polyhydroxyalkanoate Production
Applied Food Biotechnology,
Vol. 2 No. 4 (2015),
7 October 2015
,
Page 3-10
https://doi.org/10.22037/afb.v2i4.8270
Abstract
The article addresses the contemporary quest for inexpensive carbon feedstocks to be used for cost efficient biomediated polymer production; such polymers can potentially be applied in the food technology sector, mainly for packaging purposes. In particular, the work shines a light on crude glycerol, a surplus stream of the globally tremendously emerging biodiesel industry. Crude glycerol can be upgraded to a convenient substrate for microbial polyhydroxyalkanoate production without interfering with food- or feed production. The article covers the challenges of using crude glycerol as a feedstock in biotechnology, and gives an insight into the metabolic background of glycerol-based polyhydroxyalkanoate production. Particularities of glycerol-based polyhydroxyalkanoate biosynthesis, such as the characteristic formation of low-molecular mass polyesters, and the resulting impact on polymer processing, are also discussed in this review.- Biodiesel
- Biopolyester
- Glycerol
- Molecular mass
- Polyhydroxyalkanoates (PHA)
How to Cite
References
Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Appl Food Biotechnol. 2014; 1(1): 3-15.
Keshavarz T, Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol. 2010; 13(3): 321-326.
Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang JY. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 2014; 6(3): 706-754.
Koller M, Salerno A, Braunegg G. Polyhydroxy-alkanoates: basics, production and applications of microbial biopolyesters. In: Kabasci S: Bio-based plastics: materials and applications. John Wiley, New York, 2013: 137-170.
Koller M, Salerno A, Dias M, Reiterer A, Braunegg G. Modern biotechnological polymer synthesis: a review. Food Technol Biotech. 2010; 48(3): 255-269.
Chen G-Q. Plastics completely synthesized by Bacteria: Polyhydroxyalkanoates. In: Chen GG-Q: Plastics from Bacteria. Microbiology Monographs. 14: Springer Berlin Heidelberg, 2010; 17-37.
Akaraonye E, Keshavarz T, Roy I. Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol. 2010; 85(6): 732-743.
Choi J, Lee SY. Factors affecting the economics of polyhydroxyalkanoate production by bacterial ferment-ation. Appl Microbiol Biot. 1999; 51(1): 13-21.
Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules. 2005; 6(2): 561-565.
Solaiman DK, Ashby RD, Foglia TA, Marmer WN. Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol. 2006; 71(6): 783-789.
Sukan A, Roy I, Keshavarz T. Agro-industrial waste materials as substrates for the production of poly(3-hydroxybutyric acid). J Biomater Nanobiotechnol. 2014; 5(4): 229-240.
Koller M, Salerno A, Muhr A, Reiterer A, Braunegg G. Polyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resources. Mater Tehnol. 2013; 47(1): 5-12.
Huang TY, Duan KJ, Huang SY, Chen CW. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol. 2006; 33(8): 701-706.
Gonzalez‐Garcia Y, Rosales MA, Gonzalez‐Reynoso O, Sanjuan‐Duenas R, Cordova J. Polyhydroxybutyrate production by Saccharophagus degradans using raw starch as carbon source. Eng Life Sci. 2011; 11(1): 59-64.
Munoz A, Esteban L, Riley MR. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol Bioeng. 2008; 100(5): 882-888.
Braunegg G, Genser K, Bona R, Haage G, Schellauf F, Winkler E. Production of PHAs from agricultural waste material. Macromol Symp. 1999; 144: 375-383.
Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol. 2013; 97(4): 1407-1424.
Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Policy. 2012; 14(3): 495-503.
Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecien M, Adamus G, Kowalczuk M, Strohmeier K, Schober S, Mittelbach M, Koller M. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym. 2013; 73(10): 1391-1398.
Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol. 2013; 165(1): 45-51.
Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkan-oate (PHA) C- and terpolyesters from biodiesel industry derived by-products. Archaea 2013; 2013: 1-10.
Rodriguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marques-Calvo MS. Influence of glycerol on poly(3-hydroxy-butyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem Eng J. 2015; 94: 50-57.
Da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009; 27(1): 30-39.
Leoneti AB, Aragao-Leoneti V, De Oliveira SVWB. Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol. Renew Energ. 2012; 45: 138-145.
Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. From glycerol to value added products. Angew Chem Int Ed. 2007; 46(24): 4434-4440.
Hajek M, Kwiecien J, Skopal F. Biodiesel: The influence of dealcoholization on reaction mixture composition after neutralization of catalyst by carbon dioxide. Fuel. 2012; 96: 85-89.
Moita R, Freches A, Lemos PC. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res. 2014; 58: 9-20.
Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly [(R)‐3‐hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci. 2013; 13(6): 549-562.
Santhanam A, Sasidharan S. Microbial production of polyhydroxy alkanotes (PHA) from Alcaligenes spp. and Pseudomonas oleovorans using different carbon sources. Afr J Biotechnol. 2010; 9(21): 3144-3150.
Ward PG, O’Connor KE. Bacterial synthesis of polyhyd-roxyalkanoates containing aromatic and aliphatic mono-mers by Pseudomonas putida CA-3. Int J Biol Macromol. 2005; 35(3): 127-133.
Nisha J, Mudaliar N, Senthilkumar P, Samrot AV. Influence of substrate concentration in accumulation pattern of poly(R) hydroxyalkonoate in Pseudomonas putida SU-8. Afr J Microbiol Res. 2012; 6(15): 3623-3630.
Sun Z, Ramsay JA, Guay M, Ramsay B. Increasing the yield of mcl-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. J Biotechnol. 2007; 132(3): 280-282.
Wang Q, Nomura CT. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. J Biosci Bioeng. 2010; 110(6): 653-659.
Lopar M, Spoljaric IV, Cepanec N, Koller M, Braunegg G, Horvat P. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis. J Ind Microbiol Biotechnol. 2014; 41(6): 913-930.
Pappalardo F, Fragalà M, Mineo PG, Damigella A, Catara AF, Palmeri R, Rescifina A. Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Int J Biol Macromol. 2014; 65: 89-96.
Taidi B, Anderson AJ, Dawes EA, Byrom D. Effect of carbon source and concentration on the molecular mass of poly(hydroxybutyrate) produced by Methylobac-terium extorquens and Alcaligenes eutrophus. Appl Microbiol Biot. 1994; 40(6): 786-790.
Madden LA, Anderson AJ, Shah DT, Asrar J. Chain termination in polyhydroxyalkanoate synthesis: involve-ment of exogenous hydroxy-compounds as chain transfer agents. Int J Biol Macromol. 1999; 25(1): 43-53.
Ashby RD, Solaiman DK, Foglia TA. Synthesis of short-medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacro-molecules 2005; 6(4): 2106-2112.
Teeka J, Imai T, Reungsang A, Cheng X, Yuliani E, Thiantanankul J, Poomipuk N, Yamaguchi J, Jeenanong A, Higuchi T, Yamamoto K, Sekine M. Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA-AIK7 using crude glycerol. J Ind Microbiol Biot. 2012; 39(5): 749-758.
Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Progr. 2010; 26(2): 424-430.
Tanadchangsaeng N, Yu J. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol Bioeng. 2012; 109(11): 2808-2818.
Tsuge T, Ko T, Tago M, Abe H. Effect of glycerol and its analogs on polyhydroxyalkanoate biosynthesis by recombinant Ralstonia eutropha: A quantitative structure-activity relationship study of chain transfer agents. Polym Degrad Stabil. 2013; 98(9): 1586-1590.
Mothes G, Schnorpfeil C, Ackermann JU. Production of PHB from crude glycerol. Eng Life Sci. 2007; 7(5): 475-479.
Fukui T, Mukoyama M, Orita I, Nakamura S. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Appl Microbiol Biot. 2014; 98(17): 7559-7568.
Cavalheiro JM, Raposo RS, de Almeida MCM, Cesario MT, Sevrin C, Grandfils C, da Fonseca MMR. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hyd-roxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresource Technol. 2012; 111: 391-397.
Cavalheiro JM, de Almeida MCM, Grandfils C, Da Fonseca MMR. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009; 44(5): 509-515.
- Abstract Viewed: 1331 times
- PDF Downloaded: 1500 times