Applied Food Biotechnology
  • Register
  • Login
  • English
    • فارسی
    • العربية
    • 简体中文
  • Home
  • About
    • About the Journal
    • Author guidelines
    • Reviewer Guideline
    • Editorial Team
    • Pre-Print Policy
    • Archiving Policy
    • Plagiarism policy
    • Contact
  • Template of original manuscript
  • Cover Letter and Copyright
  • Current
  • Archives
Advanced Search
  1. Home
  2. Archives
  3. Vol. 9 No. 2 (2022): Spring
  4. Review Article

ISSN: 2345-5357

Spring
Vol. 9 No. 2 (2022)

The Overview of Natural by-Products of Beneficial Lactic Acid Bacteria as Promising Antimicrobial Agents

  • Joanna Ivy Irorita Fugaban
  • Wilhelm Heinrich Holzapfel
  • Svetoslav Todorov

Applied Food Biotechnology, Vol. 9 No. 2 (2022), , Page 127-143
https://doi.org/10.22037/afb.v9i2.37544 Published 14 March 2022

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Background and Objective: Aside from ability of lactic acid bacteria to conduct fermentation process, by transforming the raw materials into the final food products, they play an essential role in preservation and also production of distinct food flavors through biotransformation of organic acids and compounds. Functionality of lactic acid bacteria has been associated with their ability to produce a wide array of antimicrobial compounds which acts as a gatekeeper for the integrity of food products and safety for the consumers. Bio-preservation properties of lactic acid bacteria is associated to the production of antimicrobial peptides (including bacteriocins), variety of organic acids, diacetyl, reuterin, low molecular organic metabolites, hydrogen peroxide, and carbon dioxide, among many others. Different antimicrobials play an essential role not only in the bio-preservation, based on their antibacterial properties, but can be key factors in the anti-mould and consequently reducing the mycotoxins and/or enhance probiotic properties when lactic acid bacteria were applied as. In this review, we aim to present this in a structured manner with different examples for the application of lactic acid bacteria and their antimicrobials metabolites in bio-preservation and medical sector versus bacterial and molds and as part of the probiotics properties.


Results and Conclusion: Lactic acid bacteria are powerful microbial factories, which are able to conduct different fermentation process, to produce variety of beneficial metabolites not just for food biosafety but also for beneficial properties of probiotics and their health promoting properties.


Conflict of interest: The authors declare no conflict of interest.

Keywords:
  • ▪ Antifungal ▪ Antimicrobials ▪ Bacteriocins ▪ Lactic acid bacteria ▪ Probiotic
  • pdf

How to Cite

Fugaban, J. I. I., Holzapfel, W. H., & Todorov, S. (2022). The Overview of Natural by-Products of Beneficial Lactic Acid Bacteria as Promising Antimicrobial Agents . Applied Food Biotechnology, 9(2), 127-143. https://doi.org/10.22037/afb.v9i2.37544
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Bell V, Ferrao J, Fernandes T. Nutritional guidelines and fermented food frameworks. Foods 2017; 6(8): 65. https://doi.org/10.3390/foods6080065

Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH. Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int J Food Microbiol. 2009; 135(1): 28-33. https://doi.org/10.1016/j.ijfoodmicro.2009.07.016

Voidarou C, Antoniadou Μ, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagios A, Bezirtzoglou E. Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods 2021; 10(1): 69.

https://doi.org/10.3390/foods10010069

Patra JK, Das G, Paramithiotis S, Shin H-S. Kimchi and other widely consumed traditional fermented foods of Korea: A review. Front Microbiol. 2016; 28: 7:1-15.

https://doi.org/10.3389/fmicb.2016.01493

Angmo K, Kumari A, Savitri A, Bhalla TC. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT Food Sci Technol. 2016; 66: 428-435. https://doi.org/10.1016/j.lwt.2015.10.057

Jeong D-W, Kim H-R, Jung G, Han S, Kim C-T, Lee J-H. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J Microbiol Biotechnol. 2014; 24(5): 648-660.

https://doi.org/10.4014/jmb.1401.01009

Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel H, Dicks LMT. Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol, 2008; 104(2): 465-477.

https://doi.org/10.1111/j.1365-2672.2007.03558.x

Thakur M, Kumar V. Expanding antimicrobial resistance and shrinking antibiotic arsenal: Phytochemicals-A ray of hope. MGM J Med Sci. 2019; 6: 191-193

https://doi.org/10.4103/mgmj.mgmj_22_20

Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997; 36(1): 1-29.

https://doi.org/10.1016/s0168-1605(96)01233-0

Holzapfel WH. Culture media for non-sporulating Gram-positive food spoilage bacteria. Int J Food Microbiol. 1992; 17(2): 113-133.

https://doi.org/10.1016/0168-1605(92)90110-O

Nazzaro F, Fratianni F, Nicolaus B, Poli A, Orlando P. The prebiotic source influences the growth, biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus. Anaerobe 2012; 18(3): 280-285. https://doi.org/10.1016/j.anaerobe.2012.03.002

Aymerich T, Garriga M, Ylla J, Vallier J, Monfort JM, Hugas M. Application of enterocins as biopreservatives against Listeria innocua in Meat Products. J Food Protect. 2000; 63(6): 721-726.

https://doi.org/10.4315/0362-028x-63.6.721

Bottazzi V. Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. Trends Food Sci Technol. 1994; 5(8): 274-175.

https://doi.org/10.4014/mbl.2001.01004

Camargo AC, de Paula OAL, Todorov SD, Nero LA. In vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation. Appl Biochem Biotechnol. 2016; 178(6): 1239-1251. https://doi.org/10.1007/s12010-015-1941-3

Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int Dairy J. 2006; 16(9): 1058-1071.

https://doi.org/10.1016/j.idairyj.2005.10.026

Alemzadeh I, Afarin M, Dehghan A, Alizadeh Sani M, Teimouri M, Seilani F, Abbasi P, Vaziri AS. Clinical uses and survival study of free and encapsulated probiotic bacteria in fruit Juices: A review. Appl Food Biotechnol. 2021;8(3): 161-180.

https://doi.org/10.22037/afb.v8i3.33749

Golshahi M, Pirnia MM, Jafari P, Ebrahimi E, Tafvizi F, Dameshghian M, Tajabadi Ebrahimi M. Characterization of effective native lactic acid bacteria as potential oral probiotics on growth inhibition of Streptococcus mutans. Appl Food Biotechnol. 2021; 8(3): 201-212.

https://doi.org/10.22037/afb.v8i3.33704

Kranjec C, Ovchinnikov KV, Gronseth T, Ebineshan K, Srikantam A, Diep DB. A bacteriocin-based antimicrobial formulation to effectively disrupt the cell viability of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. NPJ Biofilms Microbiom. 2020; 6(1): 58.

https://doi.org/10.1038/s41522-020-00166-4

Bajic SS, Dokic J, Dinic M, Tomic S, Popovic N, Brdaric E, Golic N, Tolinacki M. GABA potentiate the immunoregulatory effects of Lactobacillus brevis BGZLS10-17 via ATG5-dependent autophagy in vitro. Sci Rep. 2020; 10(1): 1347.

https://doi.org/10.1038/s41598-020-58177-2

Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitos E. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact. 2015; 14(1): 1-12.

https://doi.org/10.1186/s12934-015-0313-6

LeBlanc J-G, del Carmen S, Miyoshi A, Azevedo V, Sesma F, Langella P, Bermidez-Humaran LG, Watterlot L, Perdigon G, de Moreno de LeBlanc A. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol. 2011; 151(3): 287-293.

https://doi.org/10.1016/j.jbiotec.2010.11.008

Li P, Gu Q, Wang Y, Yu Y, Yang L, Chen JV. Novel vitamin B12-producing Enterococcus spp. and preliminary in vitro evaluation of probiotic potentials. Appl Microbiol Biotechnol. 2017; 101(15): 6155-6164.

https://doi.org/10.1007/s00253-017-8373-7

Vrancken G, De Vuyst L, Van der Meulen R, Huys G, Vandamme P, Daniel H-M. Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res. 2010; 10(4): 471-481.

https://doi.org/10.1111/j.1567-1364.2010.00621.x

Do T-B-T, Nguyen T-A, Vandamme P. Isolation, screening, identification and optimization of culture parameters to produce γ-aminobutyric acid by Lactiplantibacillus pentosus R13, an isolate from ruoc (fermented shrimp paste). Appl Food Biotechnol. 2022; 10(1): 1-8.

https://doi.org/10.22037/afb.v9i1.36103

Salleh F, Lani MN, Kamaruding NA, Tuan Chilek TZ, Ismail N. Lactic acid bacteria producing sorbic acid and benzoic acid compounds from fermented durian flesh (Tempoyak) and their antibacterial activities against foodborne pathogenic bacteria. Appl Food Biotechnol. 2021; 8(2): 121-132.

https://doi.org/10.22037/afb.v8i2.32749

Vandamme P, De Bruyne K, Pot B. Lactic Acid Bacteria: Biodiversity and Taxonomy. In: Lactic Acid Bacteria: Biodiversity and Taxonomy. Hozlapfel, W.H. and Wood, B.J.B. (Eds.). 2014. pp.31-44.

Inoue Y, Hagi A, Nii T, Tsubotani Y, Nakata H, Iwata K. Novel antiseptic compound OPB-2045G shows potent bactericidal activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus both in vitro and in vivo: a pilot study in animals. J Med Microbiol. 2015; 64(1): 32-36.

https://doi.org/10.1099/jmm.0.080861-0

De Vuyst L, Foulquie Moreno MR, Revets H. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol. 2003; 84(3): 299-318. https://doi.org/10.1016/s0168-1605(02)00425-7

Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol. 2018; 49: 23-28.

https://doi.org/10.1016/j.copbio.2017.07.011

Desniar, Rusmana I, Suwanto A, Mubarik NR. Organic acid produced by lactic acid bacteria from bekasam as food biopreservatives. IOP Conf Ser: Earth Environ Sci. 2020; 414: 1-8.

https://doi.org/10.1088/1755-1315/414/1/012003

Pastrorova I, de Koster CG, Boom JJ. Analytic study of free and ester bound benzoic and cinnamic acids of gum benzoin resins by GC-MS HPLC-frit FAB-MS. Phytochem Anal. 1997; 8: 63-73.

https://doi.org/10.1002/(SICI)1099-1565(199703)8:2<63::AID-PCA337>3.0.CO;2-Y

Caroline KF, Esar SY, Soewandi A, Wihadmadyatami H, Widharna RM, Tamayanti WD, Kasih E, Tjahjono Y. Evaluation of analgesic and antiplatelet activity of 2-((3 (chloromethyl)benzoyl)oxy)benzoic acid. Prostaglandins Other Lipid Mediat. 2016; 145: 1-8. https://doi.org/10.1016/j.prostaglandins.2019.106364

Fugaban JII, Bucheli JEV, Park YJ, Suh DH, Jung ES, Franco BDGM, Ivanova IV, Holzapfel WH, Todorov SD. Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. J Appl Microbiol. 2022; 132(1): 311-330.

https://doi.org/10.1111/jam.1520

Lavermicocca P, Valerio F, Visconti A. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol. 2003; 69(1): 634-640. https://doi.org/10.1128/AEM.69.1.634-640.2003

Batdorj B, Trinetta V, Dalgalarrondo M, Prevost H, Dousset X, Ivanova I, Haertle T, Chobert J-M. Isolation, taxonomic identification and hydrogen peroxide production by Lactobacillus delbrueckii subsp. lactis T31, isolated from Mongolian yoghurt: inhibitory activity on food-borne pathogens. J Appl Microbiol. 2007; 103(3): 584-593.

https://doi.org/10.1111/j.1365-2672.2007.03279.x

Ito A, Sato Y, Kudo S, Sato S, Nakajima H, Toba T. The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Curr Microbiol. 2003; 47: 0231-0236.

https://doi.org/10.1007/s00284-002-3993-1

Tachedjian G, O’Hanlon DE, Ravel J. The implausible “in vivo” role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome 2018; 6: 1-5. https://doi.org/10.1186/s40168-018-0418-3

Adeniyi BA, Adetoye A, Ayeni FA. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. Afr Health Sci. 2015; 15(3): 888–895.

https://doi.org/10.4314/ahs.v15i3.24

Maragkoudakis PA, Mountzouris KC, Psyrras D, Cremonese S, Fischer J, Cantor MD, Tsakalidou E. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int J Food Microbiol. 2009; 130(3): 219-226. https://doi.org/10.1016/j.ijfoodmicro.2009.01.027

Debs-Louka E, Louka N, Abraham G, Chabot V, Allaf K. Effect of compressed carbon dioxide on microbial cell viability. Appl Environ Microbiol. 1999; 65(2): 626-631. https://doi.org/10.1128/AEM.65.2.626-631.1999

Blickstad E, Enfors S-O, Molin G. Effect of hyperbaric carbon dioxide pressure on the microbial flora of pork stored at 4 or 14 °C. J Appl Bacteriol. 1981; 50: 493-504.

https://doi.org/10.1111/j.1365-2672.1981.tb04252.x

Albayrak ÇB, Duran M. Isolation and characterization of aroma producing lactic acid bacteria from artisanal white cheese for multifunctional properties. LWT Food Sci Technol. 2021; 150: 112053. https://doi.org/10.1016/j.lwt.2021.112053 33

El-Gendy SM, Abdel-Galil H, Shahin Y, Hegazi FZ. Acetoin and diacetyl production by homo- and heterofermentative lactic acid bacteria. J Food Prot. 1983; 46(5): 420-425.

https://doi.org/10.4315/0362-028X-46.5.420

Jay JM. Antimicrobial properties of diacetyl. Appl Environ Microbiol. 1982; 44(3): 525-532.

Kang BS, Seo J-G, Lee G-S, Kim J-H, Kim SY, Han YW, Kang H, Kim HO, Rhee JH, Chung M-J, Park YM. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol. 2009; 47(1): 101-109.

https://doi.org/10.1007/s12275-008-0179-y

Langa S, Martin-Cabrejas I, Montiel R, Landete JM, Medina M, Arques JL. Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. J Dairy Sci. 2014; 97(10): 6116-6121.

https://doi.org/10.3168/jds.2014-8306

Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 2007; 7(1): 1-9.

https://doi.org/10.1186/1471-2180-7-101

Holtzel A, Ganzle MG, Nicholson GJ, Hammes WP, Jung G. The first low molecular weight antibiotic from lactic acid bacteria: Reutericyclin, a new tetramic acid. Angew Chem Int Ed Engl. 2000; 39(15): 2766-2768.

Asare PT, Zurfluh K, Greppi A, Lynch D, Schwab C, Stephan R. Lacroix C. Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter spp. isolates. Microorganisms 2020; 8(1): 1-12.

https://doi.org/10.3390/microorganisms8010078

Arques JL, Fernandez J, Gaya P, Nunez M, Rodrıiguez E,Medina M. ntimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int J Food Microbiol. 2004; 95(2): 225-229. https://doi.org/10.1016/j.ijfoodmicro.2004.03.009

Broberg A, Jacobsson K, Strom K, Schnurer J. Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Mictobiol. 2007; 73(17): 5547-5552.

https://doi.org/10.1128/AEM.02939-06

Ellis J-C, Ross RP, Hill C. Nisin Z and lacticin 3147 improve efficacy of antibiotics against clinically significant bacteria. Future Microbiol. 2019; 14(18): 1573-1587.

https://doi.org/10.2217/fmb-2019-0153

Furtado DN, Favaro L, Nero LA, de Melo Franco BDG, Todorov SD. Nisin production by Enterococcus hirae DF105Mi isolated from Brazilian goat milk. Probiotics Antimicrob Prot. 2019; 11(4): 1391-1402. https://doi.org/10.1007/s12602-019-09553-6

Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathogen. 2019; 128: 171-177.

https://doi.org/10.1016/j.micpath.2019.01.002

Rea MC, Ross RP, Cotter PD, Hill C. Classification of Bacteriocins from Gram-Positive Bacteria. In: Drider D, Rebuffat S. (Eds.) Prokaryotic Antimicrobial Peptides: From Genes to Applications. New York, NY, USA, Springer. 2011: 29-53.

https://doi.org/10.1007/978-1-4419-7692-5_3

Munoz A, Maqueda M, Galvez A, Martinez-Bueno M, Rodriguez A, Valdivia E. Biocontrol of psychrotrophic enterotoxigenic Bacillus cereus in a nonfat hard cheese by an enterococcal strain-producing enterocin AS-48. J Food Prot. 2004; 67(7): 1517–1521.

https://doi.org/ 10.4315/0362-028x-67.7.1517

Achemchem F, Abrini J, Martinez-Bueno M, Valdivia E, Maqueda, M. Control of Listeria monocytogenes in goat’s milk and goat’s jben by the bacteriocinogenic Enterococcus faecium F58 strain. J Food Prot. 2006; 69(10): 2370-2376.

https://doi.org/10.4315/0362-028x-69.10.2370

Todorov SD, Dicks LMT. Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol. 2009; 132(2-3): 117-126. https://doi.org/10.1016/j.ijfoodmicro.2009.04.010

Todorov SD, Franco BDGM, Tagg JR. Bacteriocins of gram-positive bacteria having activity spectra extending beyond closely-related species. Benef Microbes, 2019; 10(3): 315-328.

https://doi.org/10.3920/BM2018.0126

De Castilho NPA, Colombo M, Oliveira LL, Todorov SD, Nero LA. Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiol. 2019; 19(1): 1-13.

https://doi.org/10.1186/s12866-019-1436-4

Galvez A, Abriouel H, Lopez RL, Ben Omar N. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol. 2007; 120(1-2): 51-70.

https://doi.org/10.1016/j.ijfoodmicro.2007.06.001

Dal Bello B, Cocolin L, Zeppa G, Field D, Cotter PD, Hill C. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int J Food Microbiol. 2012; 153(1): 58-65.

https://doi.org/10.1016/j.ijfoodmicro.2011.10.016

Gong HS, Meng XC, Wang H. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control. 2010; 21(1): 89-96.

https://doi.org/10.1016/j.foodcont.2009.04.005

Stern NJ, Svetoch EA, Eruslanov BV, Kovalev YN, Volodina LI, Perelygin VV, Mitsevich EV, Mitsevitch IP, Levchuk VP. Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J Food Protect. 2005; 68(7): 1450-1453.

https://doi.org/10.4315/0362-028x-68.7.1450

Nattress FM, Yost CK, Baker LP. Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria. Int J Food Microbiol. 2001; 70(1): 111–119.

https://doi.org/10.1016/s0168-1605(01)00531-1

Mitra S, Mukhopadhyay BC, Biswas SR. Potential application of the nisin Z preparation of Lactococcus lactis W8 in preservation of milk. Lett Appl Microbiol. 2011; 53(1): 98-105.

https://doi.org/10.1111/j.1472-765X.2011.03075.x

Delves-Broughton J. Nisin and its uses as a food preservative. Food Technol. 1990; 44(11): 100–117.

Loessner M, Guenther S, Steffan S, Scherer S. A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Appl Environ Microbiol. 2003; 69(3): 1854-1857.

https://doi.org/10.1128/AEM.69.3.1854-1857.2003

Elotmani F, Revol-Junelles A-M, Assobhei O, Millière J-B. Characterization of anti-Listeria monocytogenes bacteriocins from Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis strains isolated from raib, a Moroccan traditional fermented milk. Curr Microbiol. 2002; 44(1): 10-17.

https://doi.org/10.1007/s00284-001-0067-8

Ananou S, Maqueda M, Martínez-Bueno M, Galvez A, Valdivia E. Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Sci. 2005; 71(3): 549-556. https://doi.org/10.1016/j.meatsci.2005.04.039

Rilla N, Martinez B, Rodrigues A. Inhibition of a methicillin-resistant Staphylococcus aureus strain in Afuega’l Pitu cheese by the Nisin Z-producing strain Lactococcus lactis subsp. lactis IPLA 729. J Food Protect. 2004; 67(5): 928–933.

https://doi.org/10.4315/0362-028x-67.5.928

Vaz-Velho M, Todorov S, Ribeiro J, Gibbs P. Evaluation of Carnobacterium divergens V41 and supernatant V41 abilities for reducing Listeria innocua 2030c numbers during processing and storage of cold-smoked salmon trout. Food Control. 2005; 16(6): 540-548. https://doi.org/10.1016/j.foodcont.2004.05.012

Pingitore EV, Todorov SD, Sesma F, Franco BDGM. Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol. 2012; 32(1): 38-47.

https://doi.org/10.1016/j.fm.2012.04.005

Barbosa MS, Todorov SD, Ivanova I, Chobert JM, Haertle T, Franco BDGM. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol. 2014; 46: 254-262.

https://doi.org/10.1016/j.fm.2014.08.004

Martinez RCR, Staliano CD, Vieira ADS, Villarreal MLM, Todorov SD, Saad SMI, Franco BDGM. Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp. sakei 2a in a potentially synbiotic cheese spread. Food Microbiol. 2015; 48(1): 143-152.

https://doi.org/10.1016/j.fm.2014.12.010

Wachsman MB, Castilla V, de Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res. 2003; 58(1): 17-24.

https://doi.org/10.1016/s0166-3542(02)00099-2

Remschmidt C, Schroder C, Behnke M, Gastmeier P, Geffers C, Kramer TS. Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany 10 years of surveillance. Antimicrob Resist Infect Control 2018; 7: 1-7.

https://doi.org/10.1186/s13756-018-0353-x

Reinseth IS, Ovchinnikov KV, Tønnesen HH, Carlsen H, Diep DB. The increasing issue of vancomycin resistant enterococci and the bacteriocin solution. Probiotics Antimicro Prot. 2020; 12(3): 1203-1217. https://doi.org/10.1007/s12602-019-09618-6

Ahmed MO, Baptiste KE. Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Res. 2018; 24(5): 590-606. https://doi.org/10.1089/mdr.2017.0147

Leavis HL, Willems RJL, van Wamel WJB, Schuren FH, Caspers MPM, Bonten MJM. Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. Plos Pathog. 2007; 3(1): 75-96.

https://doi.org/10.1371/journal.ppat.0030007

Coque TM, Patterson JE, Steckelberg JM, Murray BE. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis. 1995; 171(5): 1223-1129.

https://doi.org/10.1093/infdis/171.5.1223

Del Re B, Sgorbati B, Miglioli M, Palenzona D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol. 2000; 31(6): 438-442.

https://doi.org/10.1046/j.1365-2672.2000.00845.x

Franz CMAP, Holzapfel WH, Stiles ME. Enterococci at the crossroads of food safety? Int J Food Microbiol. 1999; 47(1): 1-24.

https://doi.org/10.1016/s0168-1605(99)00007-0

Steckbeck JD, Deslouches B, Montelaro RC. Antimicrobial peptides: new drugs for bad bugs? Expert Opin Bio Therapy. 2014; 14(1): 11–14.

https://doi.org/10.1517/14712598.2013.844227

Coombs GW, Pearson JC, Daley DA, Le T, Robinson OJ, Gottlieb T, Howden BP, Johnson PDR, Bennett CM, Stinear TP, Turnidge JD. Molecular epidemiology of enterococcal bacteremia in Australia. J Clin Microbiol. 2014; 52(3): 897-905.

https://doi.org/10.1128/JCM.03286-13

Faron ML, Ledeboer NA, Buchan BW. Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant Enterococcus in the health care setting. J Clin Microbiol. 2016; 54(10): 2436–2447.

https://doi.org/10.1128/JCM.00211-16

Courvalin P. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis. 2006; 42: S25-S34. https://doi.org/10.1086/491711

Leavis HL, Willems RJL, Wamel WJB, Schuren FH, Caspers MPM, Bonten MJM. Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. Plos Path. 2007; 3(1): 75-96.

https://doi.org/10.1371/journal.ppat.0030007

Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun. 2004; 72(10): 6032–6039. https://doi.org/10.1128/IAI.72.10.6032-6039.2004

Du F, Lv X, Duan D, Wang L, Huang J. Characterization of a linezolid- and vancomycin-resistant Streptococcus suis isolate that harbors optrA and vanG operons. Front Microbiol. 2019; 10: 1-12.

https://doi.org/10.3389/fmicb.2019.02026

Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. PNAS 2007; 104(7): 2384-2389. https://doi.org/10.1073/pnas.0608775104

O’Sullivan L, Ross RP, Hill C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 2002; 84(5-6): 593-604.

https://doi.org/10.1016/s0300-9084(02)01457-8

Hayes K, Cotter L, O’Halloran F. In vitro synergistic activity of erythromycin and nisin against clinical Group B Streptococcus isolates. J Appl Microbiol. 2019; 127(5): 1381-1390.

https://doi.org/10.1111/jam.14400

Thomas VM, Brown RM, Ashcraft DS, Pankey GA. Synergistic effect between nisin and polymyxin B against pandrug-resistant and extensively drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2019; 53(5): 663-668.

https://doi.org/10.1016/j.ijantimicag.2019.03.009

Singh K, Kallali B, Kumar A, Thaker V. Probiotics: A review. Asian Pac J Trop Biomed. 2011; 12: S287-S290.

https://doi.org/10.1016/S2221-1691(11)60174-3

Chi H, Holo H. Synergistic antimicrobial activity between the broad spectrum bacteriocin garvicin KS and nisin, farnesol and polymyxin B against Gram-positive and Gram-negative bacteria. Curr Microbiol. 2018; 75(3): 272–277.

https://doi.org/10.1007/s00284-017-1375-y

Hanchi H, Hammami R, Gingras H, Kourda R, Bergeron MG, Ben Hamida J, Ouellette M, Fliss I. Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiol. 2017; 12: 205-212.

https://doi.org/10.2217/fmb-2016-0113

Wolska KI, Grzes K, Kurek A. Synergy between novel antimicrobials and conventional antibiotics or bacteriocins. Pol J Microbiol. 2012; 61(2): 95-104.

Brumfitt W, Salton MRJ, Hamilton-Miller JMT. Nisin, alone and combined with peptidoglycan-modulating antibiotics: Activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chem. 2002; 50(5): 731-734.

https://doi.org/10.1093/jac/dkf190

Arnusch CJ, Pieters RJ. Breukink E. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides. Plos One. 2012; 7(6): 1-5.

https://doi.org/10.1371/journal.pone.0039768

Piper C, Draper LA, Cotter PD, Ross RP, Hill C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J Antimicrob Chem. 2009; 64(3): 546-551.

https://doi.org/10.1093/jac/dkp221

Kers, JA, Sharp RE, Defusco AW, Park JH, Xu J, Pulse ME, Weiss WJ, Handfield M. Mutacin 1140 lantibiotic variants are efficacious against Clostridium difficile infection. Front Microbiol. 2018; 9: 415. https://doi.org/10.3389/fmicb.2018.00415

Kim T-S, Hur J-W, Yu M-A, Cheigh C-I, Kim K-N, Hwang J-K, Pyun Y-R. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J Food Prot. 2003; 66(1): 3-12.

https://doi.org/10.4315/0362-028x-66.1.3

Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol. 2008; 104(4): 1067-1074.

https://doi.org/10.1111/j.1365-2672.2007.03626.x

Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, Gurguis A, Faro S. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001; 185(2): 375-379. https://doi.org/10.1067/mob.2001.115867

Silkin L, Hamza S, Kaufman S, Cobb SL, Vederas JC. Spermicidal bacteriocins: lacticin 3147 and subtilosin A. Bioorg Med Chem Lett. 2008; 18(10): 3103-3106. https://doi.org/10.1016/j.bmcl.2007.11.024

Reddy KVR, Aranha C, Gupta SM, Yedery RD. Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies. Reproduction 2004; 128(1): 117-126.

https://doi.org/10.1530/rep.1.00028

Hillman JD. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek 2002; 82(1): 361-366.

Howell TH, Fiorellini JP, Blackburn P, Projan SJ, de la Harpe J, Williams RC. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J Clin Periodontol. 1993; 20(5): 335-359.

https://doi.org/10.1111/j.1600-051x.1993.tb00369.x

Fitzgerald RJ, Morhart RE, Marquez C, Adams BO. Inhibition of caries in hamsters treated with staphylococcin 1580. Infect Immun. 1986; 54(2): 288-290.

https://doi.org/10.1128/iai.54.2.288-290.1986

Oh S, Kim S-H, Ko Y, Sim J-H, Kim KS, Lee S-H, Park S, Kim YJ. Effect of bacteriocin produced by Lactococcus sp. HY 449 on skin-inflammatory bacteria. Food Chem Toxicol. 2006; 44(8): 1184-1190.

https://doi.org/10.1016/j.fct.2005.08.008

Davidse EK, Balla E, Holzapfel WH, Muller CJC, Cloete SWP, Dicks LMT. Peptide AS-48 (Enetrococcus faecalis) for prevention and treatment of mastitis in dairy cows. Online J Vet Res. 2004; 8: 22-32.

Broadbent JR, Chou YC, Gillies K, Kondo JK. Nisin inhibits several Gram-positive, mastitis-causing pathogens. J Dairy Sci. 1989; 72(12): 3342-3345.

https://doi.org/10.3168/jds.S0022-0302(89)79496-0

Sobrino-Lopez A, Martin-Belloso O. Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J. 2008; 18(4): 329-343.

https://doi.org/10.1016/j.idairyj.2007.11.009

Montville TJ, Chung H-J, Chikindas ML, Chen Y. Nisin A depletes intracellular ATP and acts in bactericidal manner against Mycobacterium smegmatis. Lett Appl Microbiol. 1999; 28(3): 189-193.

https://doi.org/10.1046/j.1365-2672.1999.00511.x

Carroll J, Field D, O’Connor PM, Cotter PD, Coffey A, Hill C, Ross RP, O’Mahony J. The gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioengin Bugs. 2010; 1(6): 408-412.

https://doi.org/10.4161/bbug.1.6.13642

Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soy beans. Int J Antimicrob Agents, 2005; 25(6): 508-513.

https://doi.org/10.1016/j.ijantimicag.2005.02.005

Minahk CJ, Dupuy F, Morero RD. Enhancement of antibiotic activity by sub-lethal concentrations of enterocin CRL35. J Antimicrob Chem. 2004; 53(2): 240-246.

https://doi.org/10.1093/jac/dkh079

Cavicchioli VQ, de Carvalho OV, de Paiva JC, Todorov SD, Junior AS, Nero LA. Inhibition of Herpes simplex virus 1 and Poliovirus (PV 1-1) by bacteriocins from Lactococcus lactis subsp. lactis and Enterococcus durans strains isolated from goat milk. Int J Antimicrob Agents. 2018; 51(1): 33-37.

https://doi.org/10.1016/j.ijantimicag.2017.04.020

Serkedjieva J, Danova S, Ivanova I. Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii. Appl Biochem Biotechnol. 2000; 88: 285–298. https://doi.org/10.1385/abab:88:1-3:285

Smaoui S, Elleuch L, Bejar W, Karray-Rebai I, Ayadi I, Jaouadi B, Mathieu F, Chouayekh H, Bejar S, Mellouli L. Inhibition of fungi and Gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Appl Biochem Biotechnol. 2010; 162: 1132-1146.

https://doi.org/10.1007/s12010-009-8821-7

Le Lay C, Akerey B, Fliss I, Subirade M, Rouabhia M. Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J Appl Microbiol. 2008; 105(5): 1630–1639.

https://doi.org/10.1111/j.1365-2672.2008.03908.x

Lopez RL, Garcia MT, Abriouel H, Omar NB, Grande MJ, Martinez-Canamero M, Galvez A. Semi-preparative scale purification of enterococcal bacteriocin enterocin EJ97, and evaluation of substrates for its production. J Ind Microbiol Biotechnol. 2007; 34(12): 779-785.

https://doi.org/10.1007/s10295-007-0254-0

Lindenstrauss AG, Pavlovic M, Bringmann A, Behr J, Ehrmann MA, Vogel RF. Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements toward their incidence in Enterococcus faecalis and Enterococcus faecium. System Appl Microbiol. 2011; 34(8): 553-560.

https://doi.org/10.1016/j.syapm.2011.05.002

Kamboj M, Cohen N, Gilhuley K, Babady N, Seo S, Sepkowitz K. Emergence of daptomycin-resistant VRE: Experience of a single institution. Infect Control Hosp Epidemiol. 2011; 32(4): 391-394.

https://doi.org/10.1086/659152

Magnusson J, Schnürer J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol. 2001; 67(1): 1-5. https://doi.org/10.1128/AEM.67.1.1-5.2001

Strom K, Sjogren J, Broberg A, Schnurer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 2002; 68(9): 4322-4327.

https://doi.org/10.1128/AEM.68.9.4322-4327.2002

Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, Kuliyev A, Franco BDGM, Chobet J.-M, Haertle T. Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 2013: 20: 42-49. https://doi.org/10.1016/j.anaerobe.2013.01.003

Bartkiene E, Bartkevics V, Lele V, Pugajeva I, Zavistanaviciute P, Zadeike D, Juodeikiene G. Application of antifungal lactobacilli in combination with coatings based on apple processing by-products as a bio-preservative in wheat bread production. J Food Sci Technol. 2019; 56(6): 2989-3000.

https://doi.org/10.1007/s13197-019-03775-w

Zoghi A, Massoud R, Todorov SD, Chikindas ML, Popov I, Smith S, Khosravi-Darani K. Role of the lactobacilli in food bio-decontamination: friends with benefits. Enzyme Microb Technol. 2021;150 (2021): 1-12.

https://doi.org/10.1016/j.enzmictec.2021.109861

Sellamani M, Kalagatur NK, Siddaiah C, Mudili V, Krishna K, Natarajan G, Rao Putcha VL. Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Front Microbiol. 2016; 7: 890.

https://doi.org/10.3389/fmicb.2016.00890

Sevgi E, Tsveteslava II. Antifungal activity of lactic acid bacteria, isolated from Bulgarian wheat and rye flour. J Life Sci. 2015; 9: 1-6.

https://doi.org/10.17265/1934-7391/2015.01.001

Cortes-Zavaleta O, Lopez-Malo A, Hernandez-Mendoza A, Garcia H. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int J Food Microbiol. 2014; 173: 30-35. https://doi.org/10.1016/j.ijfoodmicro.2013.12.016

Yang E, Chang H. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol. 2010; 139: 56-63. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012

Field D, Ross RP, Hill C. Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr Opin Food Sci. 2018; 20: 1-6.

https://doi.org/10.1016/j.cofs.2018.02.004

Agata M, Zannini E, Coffey A, Arendt EK. Green preservatives: Combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Adv Food Nutr Res. 2012; 66: 217-238.

https://doi.org/10.1016/B978-0-12-394597-6.00005-7

Favaro L, Penna ALB, Todorov SD. Bacteriocinogenic LAB from cheeses-application in biopreservation? Trends Food Sci Technol. 2015; 41(1): 37-48.

https://doi.org/10.1016/j.tifs.2014.09.001

Axel C, Brosnan B, Zannini E, Furey A, Coffey A, Arendt EK. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int J Food Microbiol. 2016; 23: 86-94. https://doi.org/10.1016/j.ijfoodmicro.2016.05.006

Awah J, Ukwuru M, Alum E, Kingsley T. Bio-preservative potential of lactic acid bacteria metabolites against fungal pathogens. Afr J Microbiol Res. 2018; 12: 913-922. https://doi.org/10.5897/AJMR2018.8954

Salas ML, Thierry A, Lemaitre M, Garric G, Harel-Oger M, Chatel M, Le S, Mounier J, Valence F, Coton E. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Front Microbiol. 2018; 9: 1-18.

https://doi.org/10.3389/fmicb.2018.01787

Carroll J, O’Mahony J. Anti-mycobacterial peptides: Made of order with delivery included. Bioengineered Bugs 2011; 2(5): 241-246.

https://doi.org/10.4161/bbug.2.5.16229

Donaghy J. Lantibiotics as prospective antimycobacterium agents. Bioengineered Bugs 2010; 1 (6): 437-439.

https://doi.org/161/bbug.1.6.13855

Evivie SE, Huo G-C, Igene JO, Bian X. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutr Res. 2017; 61(1): 1-16.

https://doi.org/10.1080/16546628.2017.1318034

Aragon G, Graham DB, Borum M. Doman DB. Probiotic therapy for irritable bowel syndrome. Gastroenterol Hepatol. 2010; 6(1): 39-44.

Li B, Liang L, Deng H, Guo J, Shu H, Zhang L. Efficacy and safety of probiotics in irritable bowel syndrome: A systematic review and meta-analysis. Front Pharmacol. 2020; 11: 1-23.

https://doi.org/10.3389/fphar.2020.00332

Kocsis T, Molnar B, Nemeth D, Hegyi P, Szakacs Z, Balint A, Garami A, Soos A, Marta K, Solymart M. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Sci Rep. 2020; 10(1): 1-14.

https://doi.org/10.1038/s41598-020-68440-1

Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res. 2012; 2012: 1-14.

https://doi.org/10.1155/2012/902917

Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The microbiota-gut-brain axis. Physiol Rev. 2019; 99(4): 1877-2013.

https://doi.org/10.1152/physrev.00018.2018

Kim SG, Becattini S, Moody TU, Shliaha PV, Littmann ER, Seok R, Gjonbalaj M, Eaton V, Fontana E, Amoretti L, Wright R, Caballero S, Wang ZX, Jung HJ, Morjaria SM, Leiner IM, Qin W, Ramos RJJF, Cross JR, Narushima S, Honda K, Peled JU, Hendrickson RC, Taur Y, van den Brink MRM, Pamer EG. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature 2019; 572(7771): 665-669.

https://doi.org/10.1038/s41586-019-1501-z

Beasley S, Tuorila H, Saris PEJ. Fermented soymilk with a monoculture of Lactococcus lactis. Int J Food Microbiol. 2003; 81: 159-162.

https://doi.org/10.1016/S0168-1605(02)00196-4

Garcia C, Rendueles M, Diaz M. Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria. Food Res Int. 2019; 119: 207-220.

https://doi.org/10.1016/j.foodres.2019.01.043

Azizkhani M, Saris PEJ, Baniasadi M. An in vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. J Food Meas Charact. 2020; 1: 1-10.

https://doi.org/10.1007/s11694-020-00645-4

Pakdaman MN, Udani JK, Molina JP, Shahani M. The effects of the DDS-1 strain of lactobacillus on symptomatic relief for lactose intolerance-a randomized, double-blind, placebo-controlled, crossover clinical trial. Nutr J. 2015; 15: 1-11.

https://doi.org/10.1186/s12937-016-0172-y

Singh AP, Prabha V, Rishi P. Value addition in the efficacy of conventional antibiotics by nisin against Salmonella. Plos One 2013; 8(10): 1-9.

https://doi.org/10.1371/journal.pone.0076844

Mahmoudi M, Khomeiri M, Saeidi M, Davoodi H. Lactobacillus species from Iranian jug cheese: Identification and selection of probiotic based on safety and functional properties. Appl Food Biotechnol. 2021; 8: 47-56.

https://doi.org/10.22037/afb.v8i1.29253

Mahmoudi M, Khomeiri M, Saeidi M, Kashaninejad M, Davoodi H. Study of potential probiotic properties of lactic acid bacteria isolated from raw and traditional fermented camel milk. J Agr Sci Tech. 2019; 21: 1161-1172. jast.modares.ac.ir/article-23-18423-en.pdf.

  • Abstract Viewed: 201 times
  • pdf Downloaded: 189 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Language
  • English
  • فارسی
  • العربية
  • 简体中文
Keywords
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Information
  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

AWT IMAGE

The journal of "Applied Food Biotechnology" is licensed under a  CC BY-NC 4.0. International License.

The template of this website is designed by Sinaweb