Applied Food Biotechnology
  • Register
  • Login
  • English
    • فارسی
    • العربية
    • 简体中文
    • Español (España)
    • Français (France)
  • Home
  • Issues
    • Current
    • Archives
    • Accepted Manuscripts
    • In Press
  • About the Journal
    • Editorial Team
    • Indexing & Abstracting
    • Privacy Statement
    • Reviewing Policies and Procedures
    • Plagiarism Policy
    • Archiving Policy
    • Contact
  • For Authors
    • Author Guidelines
    • Journal Cover Letter
    • Copyright Form
    • Conflict of Interest
    • Template of Research/Original Paper
  • Template of Research/Original Paper
  • Training Course
Advanced Search
  1. Home
  2. Archives
  3. Vol. 9 No. 1 (2022): winter
  4. Original Article

Vol. 9 No. 1 (2022)

December 2021

Diversity of Yeasts Microbiota in Iranian Doogh and Influence of Kluyveromyces Marxianus on its Protein profiles

  • Mojgan Yazdi
  • Abolfazl Pahlevanlo
  • Mahboobe Sarabi Jamab

Applied Food Biotechnology, Vol. 9 No. 1 (2022), 29 December 2021 , Page 41-52
https://doi.org/10.22037/afb.v9i1.36003 Published: 2022-01-01

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Yazdi-1400.png

Background and Objective: Iranian drinking yogurt (Doogh) is one of the traditional beverages commercially produced and widely consumed. Mostly the spoilage of dairy products including Doogh is caused by a wide diversity of yeasts. In the present study, the swollen packages of pasteurized Doogh were investigated for yeast diversity and also the effect of predominant yeast on the proteins and peptides profiling of Doogh.

Material and Methods: The swollen packages of pasteurized Doogh were collected from a local dairy plant for one year. Isolation and identification were done using morphological, biochemical and molecular techniques. Afterward, the protein and peptide profiles of inoculated Doogh sample with high proteolytic activity yeast in comparison with Control sample were evaluated by SDS-PAGE and consequently MALDI-TOF-MS techniques.

Results and Conclusion: In total, 13 isolates belong to two genuse namely; Kluyveromyces and Candida were identified. According to 18S rRNA gene sequencing, the 8 isolates were identified as Kluyveromyces marxianus; 4 isolates matched with Kluyveromyces lactis, and 1 isolate was identified as Candida kefyr. Also, o-phthaldialdehyde test (OPA) showed that K. marxianus contain the highest proteolytic activity compare to other tested species. The results showed that the K. marxianus enzyme conducted protein profiles to β-lactoglubolin and α-lactalbumin isoforms and several peptides with molecular weight less than 10 KDa.

Keywords:
  • ▪ Genotypic Identification ▪ Iranian Drinking Yogurt ▪ Phenotypic ▪ Proteolysis ▪ Proteomics techniques ▪ Yeast Diversity
  • pdf

How to Cite

Yazdi, M. ., Pahlevanlo, A., & Sarabi Jamab, M. . (2022). Diversity of Yeasts Microbiota in Iranian Doogh and Influence of Kluyveromyces Marxianus on its Protein profiles . Applied Food Biotechnology, 9(1), 41–52. https://doi.org/10.22037/afb.v9i1.36003
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Soltani M, Say D, Guzeler N. Production and quality characteristics of “Doogh”. Akademik Gida. 2012; 10(4): 50-53.

Shariati Z, Jouki M, Rafiei F. Flavored functional drinking yogurt (Doogh) formulated with Lactobacillus plantarum LS5, cress seed gum and coriander leaves extract. Food Sci Nutr. 2019; 8(2):894-902.

doi:10.1002/fsn3.1367

Sari AA, Sasanian N, Pajohi-Alamoti M, Sasanian N. Fungal contamination and chemical assessment of Iranian Doogh marketed in Hamadan, Iran. J Res Health. 2018; 8(1): 47-51.

doi: 10.29252/acadpub.jrh.8.1.47.

Lucille G, Valence F, Pawtowski A, Auhustsinava-Galerne L, Frotté N, Baroncelli R, Daniel F,Mounier J. Diversity of spoilage fungi associated with various French dairy products. Int J Food Microbiol. 2017; 241: 191-197.

doi:10.1016/j.ijfoodmicro.2016.10.026.

Arkar S. Microbiological considerations: Pasteurized milk. Int J Dairy Sci. 2015; 10(5): 206-218.

doi:10.3923/ijds.2015.206.218.

Pal M, Mulu S, Tekle M, Pintoo SV, Prajapati JP. Bacterial contamination of dairy products. Bev Food World. 2016; 43(9): 40-43.

Jalilzadeh A, Tuncturk Y, Hesari J. Extension Shelf Life of Cheese: A review. Int J Dairy Sci. 2015; 10(2): 44-60.

doi:10.3923/ijds.2015.44.60

Chaves-Lopez, C, Serio A, Paparella A, Martuscelli M, Corsetti A, Tofalo R, Suzzi G. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiol. 2014; 42, 117-121.

doi: 10.1016/j.fm.2014.03.005.

Yang JJ, Guo CF, Ge WP, Wang QN, Zhang Y, Chen Y, Yang J, Ma Y, Yuan YJ, Qin LH. Isolation and identification of yeast in yak milk dreg of Tibet in China. Dairy Sci Technol. 2014; 94: 455-467.

doi: 10.1007/S13594-014-0172-7.

Deak T. Handbook of Food Spoilage Yeasts. 2nd edition. Boca Raton, USA: CRC Press; 2008.pp.205-208.

dio: 10.1201/9781420044942.

Mohanty DP, Tripathy P, Mohapatra S, Samantaray DP. Bioactive potential assessment of antibacterial peptide produced by Lactobacillus isolated from milk and milk products. Int J Curr Microbiol App Sci. 2014; 3(6): 72-80.

Banjara N, Suhr MJ, Hallen-Adams HE. Diversity of yeast and mold species from a variety of cheese types. Curr Microbiol. 2015; 70(6): 792-800.

doi:10.1007/s00284-015-0790-1

Brooks JC, Martinez B, Stratton JM, Bianchini A, Krokstrom R, Hutkins R. Survey of raw milk cheeses for microbiological quality and prevalence of foodborne pathogens. Food Microbiol. 2012; 31(2): 154-158.

dio: 10.1016/j.fm.2012.03.013.

Moubasher AA, Abdel‐Sater MA, Soliman ZS. Yeasts and filamentous fungi associated with some dairy products in Egypt. J Mycol Med. 2018; 28(1): 76-86.

doi: 10.1016/j.mycmed.2017.12.003.

Kurtzman CP, Fell JW, Boekhout T. The Yeasts: A Taxonomic Study. 5th edition. Elsevier, Amsterdam. 2011. Part IVb.pp.577-600.

Noorbakhsh R, Bahrami AR, Mortazavi SA, Forghani B, Bahreini M. PCR-based identification of aflatoxigenic fungi associated with Iranian saffron. Food Sci technol. 2009; 18(4):1038-1041.

Nishiguchi MK, Doukakis P, Egan M, Kizirian D, Phillips A, Prendini L, Rosenbaum, HC, Torres E, Wyner Y, DeSalle R, Giribet G. DNA isolation procedures. Tech Mol Syst Evol. Birkhauser Basel . 2002; 249-287.

doi:10.1007/978-3-0348-8125-8_12

Zhou G, Whong WZ, Ong T, Chen, B. Development of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment. Mol Cell Probes. 2000; 14(6): 339-348.

doi: 10.1006/mcpr.2000.0324.

Kurtzman CP, Fell JW. Yeasts Systematics and Phylogeny, Implication of Molecular Identification Methods for Studies in Ecology. In: Edition, Peter G, Rosa C, Editors. Biodiversity and Ecophysiology of Yeasts. Heidelberg, Berlin: Springer Inc; 2006. pp.11-30.

doi: 10.1007/3-540-30985-3_2.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30(12): 2725-2729.

doi: 10.1093/molbev/mst197.

Ebner J, Arslan AA, Fedorova M, Hoffmann R, Kuçukçetin A, Pischetsrieder M. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. J proteomics. 2015; 117(1): 41-57.

doi: 10.1016/j.jprot.2015.01.005.

Jiang S, Liu S, Zhao C, Wu C. Developing Protocols of Tricine-SDS-PAGE for Separation of polypeptides in the mass range 1-30 kDa with minigel electrophoresis system. Int J Electrochem Sci. 2016; 11: 640 -649.

Dalabasmaz S, Dittrich D, Kellner I, Drewello T, Pischetsrieder M. Identification of peptides reflecting the storage of UHT milk by MALDI-TOF-MS peptide profiling. Proteomics. 2019; 207: 103444.

doi: 10.1016/j.jprot.2019.103444.

Binetti A, Carrasco M, Reinheimer J, Suarez V. Yeasts from autochthonal cheese starters: technological and functional properties. J.Appl.Microbiol. 2013; 115(2): 434-444.

doi: 10.1111/jam.12228.

Ceugniez A, Taminiau B, Coucheney F, Jacques P, Delcenserie V, Daube G, Drider, D. Fungal diversity of “Tomme d'Orchies” cheese during the ripening process as revealed by a metagenomic study. Int J Food Microbiol. 2017; 258(1): 89-93.

doi: 10.1016/j.ijfoodmicro.2017.07.015

Gonçalves Dos Santos MTP, Benito MJ, de Guía Córdoba M, Alvarenga NB, de Herrera SRMS. Yeast community in traditional Portuguese Serpa cheese by culture-dependent and-independent DNA approaches. Int J Food Microbiol. 2017; 262(1): 63-70.

doi: 10.1016/j.ijfoodmicro.2017.09.013.

Goshima T, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A. Bioethanol Production from Lignocellulosic Biomass by a Novel Kluyveromyces marxianus Strain. Biosci Biotechnol Biochem. 2013; 77(7): 1505-1510.

doi: 10.1271/bbb.130173.

Didar Z. Investigation of Iranian Traditional Drink (Doogh) Characteristics Prepared from Camel Milk Containing Lactobacillus acidophilus LA-5. Appl Food Biotechnol. 2019; 6 (3): 185-192.

doi: 10.22037/AFB.V6I3.24227

Ebabhi AM, Adekunle AA, Okunowo WO, Osuntoki AA. Isolation and characterization of yeast strains from local food crops. J Yeast Fungal Res. 2013; 4(4): 38-43.

doi: 10.5897/JYFR2013.0112.

Ghosh SK. Study of yeast flora from fruit of Syzygium cumini (linn) skeel. Agric Biol J N Am. 2011; 2(8):1166-1170.

doi: 10.5251/abjna.2011.2.8.1166.1170.

Laurenčík M, Sulo P, Sláviková E, Piecková E, Seman M, Ebringer L. The diversity of eukaryotic microbiota in the traditional Slovak sheep cheese-Bryndza. Int J Food Microbiol. 2008; 127(1-2):176-179.

doi: 10.1016/j.ijfoodmicro.2008.06.016.

Abdel Rahman IE, Dirar HA, Osman MA. Microbiological and biochemical changes and sensory evaluation of camel milk fermented by selected bacterial starter cultures. Afr J Food Sci. 2009; 3(12): 398-405.

Bai M, Qing M, Guo Z, Zhang Y, Chen X, Bao Q, Zhang H, Sun TS . Occurrence and dominance of yeast species in naturally fermented milk from the Tiβn Plateau of China. Can J Microbiol. 2010; 56(9): 707-714.

doi: 10.1139/w10-056.

Spencer J, Rawling S, Stratford M, Steels H, Novodvorska M, Archer DB, Chandra S. "Yeast identification: Reassessment of assimilation tests as sole universal identifiers. Lett Appl Microbiol. 2011; 53(5) 503-508.‏

doi: 10.1111/j.1472-765X.2011.03130.x

Dufresne SF, Marr KA, Sydnor E, Staab JF, Karp JE, Lu K, Zhang SX, Lavalle C, Perl TM, Neofytos D. Epidemiology of Candida kefyr in Patients with Hematologic Malignancies. J Clin Microbiol. 2014; 52(6): 1830 –1837.

doi: 10.1128/JCM.00131-14.

Karaduman A, Ozaslan M, Kilic IH, Oguzkan SB. Identification and Isolation of the Yeasts in Traditional Yogurts Collected from Villages in Gaziantep, Turkey. BJSTR. 2019; 13(5): 10325- 10328.

doi: 10.26717/BJSTR.2019.13.002478.

Gebreselassie N, Abay F, Beyene F. Biochemical and molecular identification and characterization of lactic acid bacteria and yeasts isolated from Ethiopian naturally fermented buttermilk. J Food Sci Technol. 2016; 53(1): 184-196.

doi: 10.1007/s13197-015-2049-z.

Arias CR, Burns JK, Friedrich LM, Goodrich RM, Parish ME. Yeast species associated with orange juice: evaluation of different identification methods. Appl Environ Microbiol. 2002; 68(4) 1955-1961.

doi: 10.1128/AEM.68.4.1955-1961.2002.

Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Lagana A. Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal Bioanal Chem. 2016; 408(11): 2677-2685.

doi: 10.1007/s00216-016-9303-8.

Gonzalez-Olivares LG, Anorve-Morga J, Castaneda- Ovando A, Contreras-López E, Jaimez-Ordaz J. Peptide separation of commercial fermented milk during refrigerated storage. Food Sci Technol. 2014; 34(4): 674-679.

doi: 10.1590/1678-457X.6415.

Gooding RC, Yeaton J, Wallace F, Mc Tarnaghan E, Wetie AGN, Sokolowska I, Darie CC. what’s in Your Yogurt? A Proteomic Investigation. Modern Chem Appl. 2014; 2(1): 1-3.

doi: 10.4172/2329-6798.1000121.

Farvin KHS, Baron CP, Nielsen NS, Jacobsen C. Antioxidant activity of yoghurt peptides: Part 1-In vitro assays and evaluation inx-3 enriched milk. Food Chem. 2010; 123(4): 1081-1089.

doi: 10.1016/j.foodchem.2010.05.067.

Yam BZ, Khomeiri M, Mahounak AS, Jafari SM. Isolation and identification of yeasts and lactic acid bacteria from local traditional fermented camel milk, Chal. J Food Process Technol. 2015; 6(7): 1-6.

doi: 10.4172/2157-7110.1000460.

Chaves-Lopez C, Paparella A, Tofalo R, Suzzi G. Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system. Int j food microbiol. 2011; 150(1): 50-58.

doi: 10.1016/j.ijfoodmicro.2011.07.017.

Chen LS, Jie C , Ding QB, Ma Y, Chen LJ, Dong JY, Jiang TM, Maubois JL. The effect of yeast species from raw milk in China on proteolysis and aroma compound formation in Camembert-type cheese. Food Bioprocess Technol. 2012; 5(6): 2548-2556.

doi: 10.1007/s11947-011-0589-4.

Mlimbila J, Muruke MH, Hosea KM. Bioactivity of crude extracts of Ascomycetes isolated from Tanzanian tradition-nally fermented milk, Mtindi. JBAH. 2014; 4(28): 122-130.

Chaves-Lopez C, Tofalo R, Serio A, Paparella A, Sacchetti G, Suzzi G. Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk. Int J Food Microbiol. 2012; 159(1): 39-46.

doi: 10.1016/j.ijfoodmicro.2012.07.028.

Ahtesh FB, Apostolopoulos V, Stojanovska L, Shah NP, Mishra VK. Effects of fermented skim milk drink by Kluyveromyces marxianus LAF 4 co‐cultured with lactic acid bacteria to release angiotensin‐converting enzyme inhibitory activities. Int J Dairy Technol. 2018; 71: 130-140.

doi: 10.1111/1471-0307.12425

  • Abstract Viewed: 552 times
  • pdf Downloaded: 504 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Developed By

Open Journal Systems

Language

  • English
  • فارسی
  • العربية
  • 简体中文
  • Español (España)
  • Français (France)

Information

  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

AWT IMAGE

The journal of "Applied Food Biotechnology" is licensed under a  CC BY-NC 4.0. International License.

Powered by OJSPlus