Use of Purified Glycerol from Biodiesel Plants for Acylglycerol Production and Use of Acylglycerol in Foods
Applied Food Biotechnology,
Vol. 9 No. 1 (2022),
29 December 2021
,
Page 53-65
https://doi.org/10.22037/afb.v9i1.35623
Abstract
Background and Objective: Biodiesel is a well-known liquid fuel. However, a large quantity of glycerol is produced as a byproduct during the biodiesel production. If this is used as a substrate for value-added products such as monoacylglycerols, economic viability of the biodiesel process may improve. There are various uses of monoacylglycerol. However, its use as a substrate for oleogel is still a challenge. Therefore, the aim of this study was to assess the optimum acylglycerol production by immobilized lipase using glycerol from biodiesel processing and various plant oils as substrates. Moreover, use of acylglycerol for oleogel production was studied.
Material and Methods: First, glycerol was collected from biodiesel plants and purified using repeated cycles of acidification. Purified glycerol and various types of plant oils, including coconut, rice bran and palm oils, were used to produce acylglycerol via immobilized lipase catalysis. Then, acylglycerols from each plant oil were selected and used as substrates for oleogels. Acylglycerol was characterized following standard methods using gas chromatography-mass spectroscopy and Fourier transformed infrared spectroscopy. Moreover, structure and develop of oleogel were assessed using Fourier transformed infrared spectroscopy and scanning electron microscopy.
Results and Conclusion: The highest acylglycerol yield (91.15%) was achieved under conditions, including 20% enzyme loading, 6:1 glycerol to palm oil ratio, 8% water content, 40 °C reaction temperature and 24-h reaction time. Acylglycerol from glycerol with palm oil included mono, di and triacylglycerols with contents of 85.0, 10.0 and 2.0%, respectively. Results showed that types of oil included no effects on oleogel qualifications in this study and all oleogels included good characteristics use in foods.
- ▪ Acylglycerol ▪ Immobilized ▪ Lipase ▪ Oleogel
How to Cite
References
O’ Sullivan CM, Barbut S, Marangoni AG. Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends Food Sci Technol. 2016; 57: 59-73.
doi:10.1016/j.tifs.2016.08.018.
Hu B, Yan H, Sun Y, Chen X, Sun Y, Li S, Li H. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology. Artif Cells Nanomed Biotechnol. 2019; 48(1): 266-275.
doi:10.1080/21691401.2019.1699833.
Yilmaz E, Ogutcu M, Yuceer YK. Physical properties, volatiles compositions and sensory descriptions of the aromatized hazelnut oil-wax organogels. J Food Sci. 2015; 80(9): S2035-S2044.
doi:10.1111/1750-3841.12992.
Patel AR. A colloidal gel perspective for understanding oleogelation. Curr Opin Food Sci. 2017; 15: 1-7.
doi:10.1016/j.cofs.2017.02.013.
Puscas A, Muresan V, Socaciu C, Muste S. Oleogels in food: A review of current and potential applications. Foods. 2020; 9(1): 1-28.
doi:10.3390/foods9010070.
Dassanayake LSK, Kodali DR, Ueno S. Formation of oleogels based on edible lipid materials. J Colloid Interface Sci. 2011; 1: 432-439.
doi: 10.1016/j.cocis. 2011. 05.005.
Lambert C, Cubedo J, Padro T, Sanchez-Hernandez J, Antonijoan R, Perez A, Badimon L. Phytosterols and omega 3 supplementation exert novel regulatory effects on metabolic and inflammatory pathways: A proteomic study. Nutr. 2017; 9(6): 1-16.
doi:10.3390/nu9060599.
Rodrigues A, Bordado JC, Santos RG. Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals-A technological review for three chemical pathways. Energies 2017; 10(11): 1817-1852.
doi:10.3390/en10111817.
Canela-Xandri A, Balcells M, Villorbina G, Christou P, Canela-Garayoa R. Preparation and uses of chlorinated glycerol derivatives. Molecules 2020; 25(11): 2511-2549.
doi:10.3390/molecules25g112511.
Liu Q, Wang M, Jiang Z, Yang G, Wei J, Fang T. Bottlenecks identification and intensification for transesterification of surplus glycerol and triacylglycerols: Thermodynamics, mechanism and kinetics analysis. Chem Eng J. 2018; 349: 192-203.
doi:10.1016/j.cej.2018.05.040.
Micic R, Tomic M, Martinovic F, Kiss F, Simikic M, Aleksic A. Reduction of free fatty acids in waste oil for biodiesel production by glycerolysis: Investigation and optimization of process parameters. Green Proc Synth. 2019; 8:15-23.
doi:10.1515/gps-2017-0118.
Nitbani FO, Tjitda PJP, Nurohmah BA, Wogo HE. Prepa-ration of fatty acid and monoglyceride from vegetable Oil. J Oleo Sci. 2020; 69(4): 277-295.
doi:10.5650/jos.ess19168.
Toldra-Reig F, Mora L, Toldra F. Trends in biodiesel produ-ction from animal fat waste. Appl Sci. 2020; 10(10): 3644-3660.
doi:10.3390/app10103644.
Hobuss CB, Da Silva FA, Dos Santos MAZ, De Pereira CMP, Schulz GAS, Bianchini D. Synthesis and characterization of monoacylglycerols through glycerolysis of ethyl esters derived from linseed oil by green processes. RSC Adv. 2020; 10(4): 2327-2336.
doi:10.1039/c9ra07834g.
Kavadia MR, Yadav MG, Odaneth AA, Arvind ML. Prod-uction of glyceryl mono stearate by immobilized Candida antarctica B lipase in organic media. J Appl Biotechnol Bioeng. 2017; 2(3): 96-103.
doi:10.15406/jabb.2017.02.00031.
Palacios D, Ortega N, Rubio-Rodriguez N, Busto MD. Lipase-catalyzed glycerolysis of anchovy oil in a solvent-free system: Simultaneous optimization of monoacylglycerol synthesis and end-product oxidative stability. Food Chem. 2019; 271(15): 372-379.
doi:10.1016/j.foodchem.2018.07.184.
Chen XW, Sun SD, Yang GL, Ma CG. Engineering phyto-sterol-based oleogels for potential application as sustainable petrolatum replacement. RSC Adv. 2020; 10(1): 244-252.
doi:10.1039/c9ra06950j.
Binhayeeding N, Yunu T, Paichid N, Klomklao S, Sangkh-arak K. Immobilisation of Candida rugosa lipase on polyhydroxylbutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochem. 2020; 95: 174-185.
doi:10.1016/j.procbio.2020.02.007.
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: A comprehensive review. Microb Cell Fact. 2020; 19(1):169-210.
doi:10.1186/s12934-020-01428-8.
Pitt FD, Domingos AM, Barros AAC. Purification of residual glycerol recovered from biodiesel production. S Afr J Chem Eng. 2019; 29: 42-51.
doi:10.1016/j.sajce.2019.06.001.
Shurson GC, Kerr BJ, Hanson AR. Evaluating the quality of feed fats and oils and their effects on pig growth performance. J Animal Sci Biotechnol. 2015; 6(1): 1-11.
doi:10.1186/s40104-015-0005-4.
Ferro AC, Okuro PK, Badan AP, Cunha RL. Role of the oil on glyceryl monostearate based oleogels. Food Res Int. 2019; 120: 610-619.
doi:10.1016/j.foodres.2018.11.013.
Vazquez L, Jordan A, Reglero G, Torres CF. A first attempt into the production of acylglycerol mixtures from echium oil. Front Bioeng Biotechnol. 2016; 3: 208.
doi:10.3389/fbioe.2015.00208.
Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. Plos One 2017; 12(1): 1-17.
doi:10.1371/journal.pone.0170611.
Colucci G, Santamaria-Echart A, Silva SC, Fernandes IPM, Sipoli CC, Barreiro MF. Development of water-in-oil emulsions as delivery vehicles and testing with a natural antimicrobial extract. Molecules 2020; 25(9): 2105-2029.
doi:10.3390/molecules25092105.
Gomes A, Costa ALR, Cunha RL. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Colloids Surf B Biointerfaces. 2018; 164: 272-280.
doi:10.1016/j.colsurfb.2018.01.032.
Li Y, Xiang D. Stability of oil-in water emulsions performed by ultrasound power or high-pressure homogenization. Plos One 2019; 14(3): 1-14.
doi:10.1371/journal.pone.0213189.
Kanai N, Yoshihara N, Kawamura I. Solid-state NMR charac-terization of triacylglycerol and polysaccharides in coffee beans. Biosci Biotechnol Biochem. 2019; 83(5): 1-7.
doi:10.1080/09168451.2019.1571899.
Hajek M, Skopal F. Treatment of glycerol phase formed by biodiesel production. Bioresour Technol. 2010; 101: 3242-3245.
doi:10. 1016/ j. biortech. 2009.12.094.
Pinyaphong P, Sriburi P, Phutrakul S. Synthesis of monoacy-lglycerol from glycerolysis of crude glycerol with coconut oil catalyzed by Carica papaya lipase. Int J Chem Mol Nucl Mater Eng. 2012; 6(10): 926-993.
Lu Y, Zou X, Han W, Jiang Y, Jin Q, Li L, Xu X, Wang X. Preparation of diacylglycerol-enriched rice bran oil by lipase-catalyzed deacidification in packed-bed reactors by continuous dehydration. J Oleo Sci. 2016; 65(2): 151-159.
doi:10.5650/jos.ess15238.
Vilarrasa E, Tres A, Bayes-Garcia L, Parella T, Esteve-Garcia E, Barroeta AC. Re-esterified palm oils, compared to native palm oil, do not alter fat absorption, postprandial lipemia or growth performance in broiler chicks. Lipids 2014; 49(8): 795-805.
doi:10.1007/s11745-014-3920-9.
Efendy GD, Sheikh Abdul KSH, Latip NA, Rahim S, Mazlan M. Palm oil in lipid-based formulations and drug delivery systems. Biomolecules 2019; 9(2): 64.
doi:10.3390/biom9020064.
Hongpatarakere T. Production of monoglyceride from palm oil by immobilized-lipase-catalyzed glycerolysis reaction. J Sci Technol. 2001; 23(4): 547-553.
Satriana Arpi N, Lubis YM, Adisalamun Supardan MD, Mustapha WAW. Diacylglycerol-enriched oil production using chemical glycerolysis. Eur J Lipid Sci Technol. 2016; 118(12): 1880-1890.
doi:10.1002/ejlt.201500489.
Yang T, Rebsdorf M, Engelrud U, Xu X. Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system. J Agric Food Chem. 2005; 53: 1475-1481.
doi:10.1021 /jf048405g.
Yesiloglu Y. Immobilized lipase-catalyzed ethanolysis of sunflower oil. J Am Oil Chem Soc. 2004; 81(2): 157-160.
Irimescu R, Iwasaki Y, Hou CT. Study of TAG ethanolysis to 2-MAG by immobilized Candida antarctica lipase and synthesis of symmetrically structured TAG. J Am Oil Chem Soc. 2002; 79(9):879-883.
doi:10.1007/s11746-002-0573-8.
Tan KT, Lee KT, Mohamed AR. Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. J Supercrit Fluids. 2010; 53(1-3):88–91.
doi:10.1016/j.supflu.2010.01.012.
Ding J, Xia Z, Lu J. Esterification and deacidification of a waste cooking oil (TAN 68.81 mg KOH/g) for biodiesel production. Energies 2012; 5(8): 2683-2691.
doi:10.3390/en5082683.
Jonas M, Ketlogetswe C, Gandure J. Effect of fruit maturity stage on some physicochemical properties of jatropha seed oil and derived biodiesel. ACS Omega 2020; 5(23): 13473-13481. doi:10.1021/acsomega.9b03965.
Zhong N, Li L, Xu X, Cheong L, Li B, Hu S, Zhao X. Glycerolysis of palm olein by immobilized lipase PS in organic solvents. J Am Oil Chem Soc. 2009; 86(8): 783-789. doi:10.1016/j.enzmictec.2004.04.011.
Piyatheerawong W, Iwasaki Y, Xu X, Yamane T. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases. J Mol Catal B Enzym. 2004; 28: 19-24.
doi:10.1016/j.molcatb.2004.01.008.
Cheong L-Z, Tan C-P, Long K, Suria M, Yusoff A, Arifin N, Lo S-K, Lai O-M. Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: Optimization using response surface methodology. Food Chem. 2007; 105: 1614-1622.
doi:10.1016/j.foodchem.2007.03.070.
Nicholson RA, Marangoni AG. Lipase-catalyzed glycerolysis extended to the conversion of a variety of edible oils into structural fats. Current Res Food Sci. 2021; 4: 163–174. doi:10.1016/j.crfs.2021.03.005.
Zhong N, Li L, Xu X, Cheong LZ, Xu Z, Li B. High yield of monoacylglycerols production through low-temperature chemical and enzymatic glycerolysis. Eur J Lipid Sci Technol. 2013; 115(6): 684–690.
doi:10.1002/ejlt.201200377.
Nitbania FO, Siswantaa JD, Solikhah EN. Reaction path synthesis of monoacyl glycerol from fat and oils. Int J Pharm Sci Rev Res. 2015; 35(23): 126–136.
Zeng F, Yang B, Wang Y, Wang W, Ning Z, Li L. Enzymatic production of monoacylglycerols with camellia oil by the glycerolysis reaction. J Am Oil Chem Soc. 2010; 87(5): 531-537.
Vazquez L, Jordan A, Reglero G, Torres CF. A first attempt into the production of acylglycerol mixtures from echium oil. Front Bioengin Biotechnol. 2016; 3: 208.
doi:10.3389/fbioe.2015.00208.
Goodarzi F, Zendehboudi S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can J Chem Eng. 2018; 97(1): 281-309.
doi:10.1002/cjce.23336.
Zhu Q, Pan Y, Jia X, Li J, Zhang M, Yin L. Review on the stability mechanism and application of water‐in‐oil emulsions encapsulating various additives. Compr Rev Food Saf. 2019; 0: 1-16.
doi:10.1111/1541-4337.12482.
Norton IT, Spyropoulos F, Cox PW. Effect of emulsifiers and fat crystals on shear induced droplet break-up, coalescence and phase inversion. Food Hydrocolloids. 2009; 23(6):1521–1526.
doi:10.1016/j.foodhyd.2008.09.014.
Liu Y, Deng YY, Dong H, Zhang Y, Tang XJ, Li P, Liu G, Zhang MW. Comparison of the effects of different food-grade emulsifiers on the properties and stability of a casein-maltodextrin-soybean oil compound emulsion. Molecules 2020; 25(3): 458-474.
doi:10.3390/molecules25030458.
Sobhaninia M, Nasirpour A, Shahedi M, Golkar A. Oil-in-water emulsions stabilized by whey protein aggregates: Effect of aggregate size, pH of aggregation and emulsion pH. J Disper Sci Technol. 2016; 38(9): 1366–1373.
doi:10.1080/01932691.2016.1224719.
Sawalha H, Den Adel R, Venema P, Bot A, Floter E, Van Der Linden E. Organogel-emulsions with mixtures of β-sitosterol and γ-oryzanol: Influence of water activity and type of oil phase on gelling capability. J Agric Food Chem. 2012; 60(13):3462-3470.
doi:10.1021/jf300313f.
Chen CH, Terentjev EM. Aging and metastability of monoglycerides in hydrophobic solutions. Langmuir 2009; 25 (12): 6717-6724.
doi:10.1021/la9002065.
Da Pieve S, Calligaris S, Co E, Nicoli MC, Marangoni AG. Shear nano structuring of monoglyceride organogels. Food Biophys. 2010; 5(3): 211-217.
doi:10.10 07/s11483-010-9162-3.
Floter E, Wettlaufer T, Conty V, Scharfe M. Oleogels-their applicability and methods of characterization. Molecules 2021; 26(6): 1673-1691.
doi:10.3390/molecules26061673.
Rocha-Amador OG, Gallegos-Infante JA, Huang Q, Rocha-Guzman NE, MorenoJimenez MR, Gonzalez-Laredo RF. Influence of commercial saturated monoglyceride, mono/diglycerides mixtures, vegetable oil, stirring speed and temperature on the physical properties of organogels. Int J Food Sci. 2014; 8: 221-231.
doi:10.1155 /2014 /513641.
Den Adel R, Heussen PCM, Bot A. Effect of water on self-assembled tubules in β-sitosterol+γ-oryzanol-based organ-ogels. J Phys Conf Ser. 2010; 247: 012025.
doi:10.1088/1742-6596/247/1/012025.
Zhong N, Kou M, Zhao F, Yang K, Lin S. Enzymatic production of diacylglycerols from high‐acid soybean oil. J Am Oil Chem Soc. 2019; 96: 967-974.
doi:10.1002/aocs.12245.
- Abstract Viewed: 620 times
- pdf Downloaded: 486 times