Animal-Food-Human Antimicrobial Resistance Fundamentals, Prevention Mechanisms and Global Surveillance Trends: A Terse Review
Applied Food Biotechnology,
Vol. 8 No. 2 (2021),
16 March 2021
,
Page 89-102
https://doi.org/10.22037/afb.v8i2.32206
Abstract
Background and objective:
Food-producing animals can potentially transmit resistant bacterial pathogens to humans with various rates in various microbial species. Confronting the global antimicrobial resistance challenges needs collaboratively collective efforts by countries. Published literatures regarding antimicrobial resistance challenges and surveillance continually increase worldwide. Furthermore, understanding of antimicrobial resistance challenges and surveillance must be improved. Therefore, this brief review included antimicrobial resistance fundamentals and prevention mechanisms and its global surveillance trends specific to animal-food-human pathways.
Results and Conclusions:
The capacity of antimicrobial resistance to include economic and health effects on various regions of the world must not be underestimated. The nature of antimicrobial resistance mechanisms contributes to its complicated spread mechanisms. Hence, there is the need for effective and efficient methods or strategies to challenge antimicrobial resistance. In addition to the concerns of antimicrobial agents with the developed understanding of the antimicrobial resistance prevention mechanisms, key facts of surveillance, specifically in microbiological contexts, are demonstrated in this review. In recent decades, global surveillance trends have been urged to overcome antimicrobial resistance problems. Due to its complexities, antimicrobial resistance remains a major public health concern with no single strategy to thoroughly prevent emergence or spread of infectious microorganisms.
- microorganisms
- antimicrobial resistance
- global surveillance
- antimicrobial agents
- antibiotics
How to Cite
References
REFERENCES
Ashbolt R, Barralet J, Bell R, Bittisnich D, Combs B, Carson C, Crerar S and others in the OzFoodNet Working Group. Foodborne disease investigation across Australia: Annual report of the OzFoodNet network, 2003. Commun Dis Intell Quart Rep. 2004; 28(3): 359-389.
https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-2004-cdi2803h.htm
Chao G, Zhou X, Jiao X, Qian X, Xu L. Prevalence and antimicrobial resistance of foodborne pathogens isolated from food products in China. Foodborne Pathogens Dis. 2007; 4(3): 277-284.
doi: 10.1089/fpd.2007.0088
Harakeh S, Saleh I, Zouhari O, Baydoun E, Barbour E, Alwan N. Antimicrobial resistance of Listeria monocytogenes isolated from dairy-based food products. Sci Total Environ. 2009; 407: 4022-4027.
doi: 10.1016/j.scitotenv.2009.04.010
Rousham EK, Unicomb L, Islam MA. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and One Health approaches. Proc Biol Sci. 2018: 285(1876):20180332.
doi: 10.1098/rspb.2018.0332.
Wieland B, Regula G, Danuser M, Wittwer M, Burnens AP, Wassenaar TM, Stark KDC. Campylobacter spp. in dogs and cats in switzerland: Risk factor analysis and molecular characterization with AFLP. J Vet Med. 2005; B52: 183-189.
doi:10.1111/j.1439-0450.2005.00843.x
Salisbury JG, Nicholls TJ, Lammerding AM, Turnidge J, Nunn MJ. A risk analysis framework for the long-term management of antibiotic resistance in food producing animals. Int J Antimicrob Ag. 2002; 20(3): 153-154.
doi:10.1016/S0924-8579(02)00169-3
Silbergeld EK, Graham J, Price LB. Industrial Food Animal Production, Antimicrobial Resistance and Human Health. Ann Rev Public Health. 2008; 29: 151-169.
doi:10.1146/annurev.publhealth.29.020907.090904
Verraes C, van Boxstael S, van Meervenne E, van Coillie E, Butaye P, Catry B, et al. Antimicrobial resistance in the food chain: A review. Int J Environ Res Public Health. 2013; 10: 2643-2669
doi:10.3390/ijerph10072643
World Health Organization (WHO). Food Safety: WHO Advisory Group on Integrated Surveillance Antimicrobial Resistance (AGISAR). Available from:
(https://www.who.int/foodsafety/areas_work/antimicrobial-resistance/agisar/en/). [Accessed 24 August 2019, 17.04 h GMT].
Castro-Sanchez E, Drumright LN, Gharbi M, Farrell S, Holmes AH. Mapping antimicrobial stewardship in undergraduate medical, dental, pharmacy, nursing and veterinary education in the United Kingdom. Plos One. 2016: 11(2):e0150056.
doi:10.1371 /journal.pone.0150056.
Fong IW, Shlaes D, Drlica K. Antimicrobial Resistance in the 21st Century-Emerging Infectious Diseases of the 21st Century 2nd Edition. Cham, Switzerland: Springer Nature, 2018: 1-773.
Kon K, Rai M. Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches. London, UK: Academic
Press/Elsevier, 2016: 1-413
Anyanwu MU, Chah KF. Antibacterial resistance in African catfish aquaculture: A review. Not Sci Biol. 2016; 8(1): 1-20.
doi: 10.15835/nsb819712
Collignon PJ; McEwen SA. One Health - Its importance in helping to better control antimicrobial resistance. Trop Med Infect Dis. 2019; 4: 22.
doi: 10.3390/tropicalmed4010022
Anyanwu MU, Jaja IF, Nwobi OC. Occurrence and characteristics of mobile colistin resistance (mcr) gene-containing isolates from the environment: A review. Int J Environ Res Public Health. 2020; 17 (3): 1028
doi:10.3390/ijerph17031028
Muloi D, Ward MJ, Pedersen AB, Fevre EM, Woolhouse MEJ, Van Bunnik BAD. Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resis-tance Determinants to Human Populations? A Systematic Review. Foodborne Pathog Dis. 2018; 15(8):467-474
doi: 10.1089/fpd.2017.2411
Franklin A, Acar J, Anthony F, Gupta R, Nicholls T, Tamura Y, Thompson S, Threlfall EJ, Vose DJ,Van Vuuren M, White DG, Wegener HC, Costarrica ML. Antimicrobial resistance: Harmonisation of national antimicrobial resistance monitoring and surveillance programmes in animals and in animal-derived food. Rev Sci Tech Off Int Epiz. 2001; 20(3): 859-870.
doi: 10.20506/rst.20.3.1315
Aidara-Kane, A. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. Rev Sci Tech. 2012, 31(1): 277-287.
doi: 10.20506/rst.31.1.2115
World Health Organization (WHO). Global action plan on antimicrobial resistance. 2015, http://apps.who.int/ir-is/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1. [Accessed 19 August 2019, 05.00 h GMT].
World Health Organization (WHO). Manual for early implementation: Global antimicrobial resistance surveillance system.2015, https://apps.who.int/iris/bitstream/handle/10665/188783/9789241549400_eng.pdf?sequence=1. [Accessed 19 August 2019, 05.00 h GMT.]
Reed TAN, Krang S, Miliya T, Townell N, Letchford J, Bun S, et al. Antimicrobial resistance in Cambodia: a review. Int J Infect Dis. 2019, 85: 98-107.
doi:10.1016/j.ijid.2019.05.036
Sosa A de J, Byarugaba, DK, Amabile CF, Hsueh P-R, Kariuki S, Okeke IN. Antimicrobial Resistance in Developing Countries. New York, USA: Springer Science+Business Media, 2010: pp.548.
Acar JF, Rostel B. Antimicrobial resistance: An overview. Rev Sci Tech. 2001, 20(3): 797-810.
doi: 10.20506/rst.20.3.1309
Acar JF, Moulin G. Integrating animal health surveillance and food safety: The issue of antimicrobial resistance. Rev Sci Tech. 2013; 32(2): 383-392.
doi: 10.20506/rst.32.2.2230
Ndihokubwayo JB, Yahaya AA, Desta AT, Ki-Zerbo G, Asamoah-Odei E, Keita B, et al. Antimicrobial resistance in the African Region: Issues, challenges and actions proposed. African Health Monitor 2013, 16: 27-30.
Simonsen GS, Tapsall JW, Allegranzi B, Talbot EA, Lazzari S. The antimicrobial resistance containment and surveillance approach–a public health tool. Bull World Health Org. 2004; 82 (12): 928-934.
Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilber M, Bonhoeffer S, Laxminarayan R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365:1-7
doi: 10.1126/science.aaw1944
Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R. Reducing antimicrobial use in food animals. Science 2017; 357 (6358): 1350-1352.
doi: 10.1126/science.aao1495
Khachatourians GG. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Can Med Assoc J. 1998; 159(9): 1129-1136.
Agbo MC, Ezeonu IM, Ike AC, Ugwu CC. Multidrug-resistance patterns and detection of Psts gene in clinical isolates of Pseudomonas aeruginosa from Nsukka Southeast Nigeria. Asian J Pharm Clin Res. 2020; 13(4): 115-119.
doi:10.22159/ajpcr.2020.v13i4.36669
Inglis GD, McAllister TA, Busz HW, Yanke LJ, Morck DW, Olson ME, Read RR. Effects of subtherapeutic administration of antimicrobial agents to beef cattle on the prevalence of antimicrobial resistance in Campylobacter jejuni and Campylobacter hyointestinalis. Appl Environ Microbiol. 2005; 71 (7): 3872-3881.
doi: 10.1128/AEM.71.7.3872-3881.2005
Smith GS, Blaser MJ. Fatalities associated with Campylobacter jejeni infections. J Am Med Assoc. 1985; 253(19): 2873-2875.
doi:10.1001/jama.1985.03350430085033
Bai L, Du P, Du Y, Sun H, Zhang P, Wan Y,Lin Q, Fanning S, Cui S, Wu Y. Detection of plasmid-mediated tigecycline-resistant gene tet(X4) in Escherichia coli from pork, Sichuan and Shandong Provinces, China, February 2019. Euro Surveill. 2019; 24(25): 1-4.
doi:10.2807/1560-7917.ES.2019.24.25.1900340
He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol. 2019; 4: 1450-1456.
doi:10.1038/s41564-019-0445-2
Felmingham D. The need for antimicrobial resistance surveillance. J Antimicrob Chemoth. 2002; 50: 1-7.
doi:10.1093/jac/dkf807
Moongtui W, Picheansathian W, Senaratana W. Role of nurses in prevention of antimicrobial resistance. Region Health Forum. 2011; 15(1): 104-111.
Keizer J, Braakman-Jansen LMA, Kampmeier S, Kock R, Al-Naiemi N, Te Riet-Warning R, Beerlage-De Jong N, Becker K, Van Gemert-Pijnen JEWC. Correction to: Cross-border comparison of antimicrobial resistance (AMR) and AMR prevention measures: the healthcare workers’ perspective. Antimicrob Resist Infect Cont. 2019; 8: 123.
doi:10.1186/s13756-019-0589-0
Thamlikitkul V, Rattanaumpawan P, Boonyasiri A, Pumsuwan V, Judaeng T, Tiengrim S, Paveenkittiporn W, Rojanasthien S, Jaroenpoj S, Issaracharnvanich S. Thailand antimicrobial resistance containment and prevention program . J Global Antimicrob Resist. 2015; 3(4): 290-294.
doi:10.1016/j.jgar.2015.09.003
Cookson B, Mackenzie D, Coutinho AP, Russell I, Fabry J. Consensus standards and performance indicators for prevention and control of healthcare-associated infection in Europe. J Hosp Infect. 2011; 79(3): 260-264.
doi: 10.1016/j.jhin.2011.07.008
Flanagan M, Ramanujam R, Sutherland J, Vaughn T, Diekema D, Doebbeling BN. Development and validation of measures to assess prevention and control of AMR in hospitals. Med Care. 2007; 45(6): 537-544,
doi: 10.1097/MLR.0b013e31803bb48b
Monnet DL. Toward multinational antimicrobial resistance surveillance systems in Europe. Int J Antimicrob Ag. 2000; 15: 91-101.
doi:10.1016/S0924-8579(00)00148-5
Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A. Antimicrobial drug use in food-producing animals and associated human health risks: what and how strong, is the evidence? BMC Vet Res. 2017; 13: 2-38.
doi:10.1186/S12917-017-1131-3
Cornagha G, Hryniewicz W, Jarlier V, Kahlmeter G, Mittermayer H, Stratchounski L, Baquero F. European recommendations for antimicrobial resistance surveillance. Clin Microbiol Infect. 2004; 10: 349-383.
doi:10.1111/j.1198-743X.2004.00887.x
Paddock SW. Confocal Laser Scanning Microscopy. BioTechniques 1999; 27(5): 992-1004.
doi: 10.2144/99275ov01
Thomas S, Thomas R, Zachariah AK, Mishra RK. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization. 1st Edition, USA-Elsevier Inc, 2017: pp. 292
Rudkjobing VB, Thomsen TR, Xu Y, Melton-Kreft R, Ahmed A, Eickhardt S, Bjarnsholt T, et al. Comparing culture and molecular methods for the identification of microorganisms involved in necrotizing soft tissue infections. BMC Infect Dis. 2016; 16: 2-13.
doi: 10.1186/s12879-016-1976-2.
Dubourg G, Lamy B, Ruimy R. Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: Meeting the challenge to reduce the time to result. Clin Microbiol Infect. 2018; 24 (9): 935-945.
doi:10.1016/j.cmi.2018.03.031
Multi-locus Sequence Typing, available from: https://pubm-lst.org/general.shtml/ [Accessed 05 September 2020]
PFGE-PulseNet, CDC- Centers for Disease Control and Prevention, available from:
http://www.cdc.gov/pulsenet/pathogens/pfge.html/ [Accessed 05 September 2020]
Real Time PCR, available from:
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/real-time-polymerase-chain-reaction; [Accessed 05 September 2020]
Mathuria JP, Nath G, Samaria JR, Anupurba S. Molecular characterization of INH-resistant Mycobacterium tuberculosis isolates by PCR-RFLP and multiplex-PCR in North India. Infect Genet Evol. 2009; 9(6): 1352-1355.
doi:10.1016/j.meegid.2009.09.008
Antunes P, Machado J, Peixe L. Characterization of antimicrobial resistance and class 1 and 2 interns in Salmonella enterica isolates from different sources in Portugal. J Antimicrob Chemoth. 2006; 58(2): 297-304.
doi:10.1093/jac/dkl242
Razin S, Tully IG. Molecular and Diagnostic Procedures in Mycoplasmology. USA: Academic Press-Elsevier, 1995: 481- 483
doi:10.1016/B978-0-12-583805-4.X5000-6
Ranjbar R, Behnood V, Memariani H, Najafi A, Moghbeli M, Mammina C. Molecular characterisation of quinolone-resistant Shigella strains isolated in Tehran, Iran. J Global Antimicrob Resist. 2016; 5: 26-30.
doi:10.1016/j.gar.2016.01.010
M’Zali FH, Gascoyne-Binzi DM, Heritage J, Hawkey PM. Detection of mutations conferring extended-spectrum activity on SHV β-lactamases using polymerase chain reaction single strand conformational polymorphism (PCR-SSCP). J Anti-microb Chemoth. 1996; 37(4): 797-802.
doi:10.1093/jac/37.4.797
Delamare APL, Lucena RF, Thomazi G, Ferrarini S, Zacaria J, Echeverrigaray S. Aeromonas detection and characterization using genus-specific PCR and single-strand conformation polymorphism (SSCP). World J Microbiol Biotechnol. 2012; 28: 3007-3013.
doi:10.1007/S11274-012-1111-5.
Chanawong A, M’Zali FH, Heritage J, Lulitanond A, Hawkey PM. Characterisation of extended-spectrum β-lactamases of the SHV family using a combination of PCR-single strand conformation polymorphism (PCR-SSCP) and PCR-restriction fragment length polymorphism (PCR-RFLP). FEMS Microbiol Lett. 2000; 184(1): 85-89.
doi:10.1111/j.1574-6968.2000.tb08995
Ravibalan T, Maruthai K, Samrot AV, Muthaiah M. Characterization of Katy and rpoB gene mutations in Multi Drug Resistant Mycobacterium tuberculosis clinical isolates. Int J Current Microbiol Appl Sci. 2014; 3(9): 1072-1080.
Chial H. DNA fingerprinting using amplified fragment length polymorphisms (AFLP): No genome sequence required. Nature Educ. 2008; 1(1): 176,
Pergola S, Franciosini MP, Comitini F, Ciani M, De Luca S, Bellucci S, Menchetti L, Casagrande Proietti P. Genetic diversity and antimicrobial resistance profiles of Campylo-bacter coli and Campylobacter jejune isolated from broiler chicken in farms and at time of slaughter in central Italy. J Appl Microbiol. 2017; 122: 1348-1356.
doi: 10.1111/jam.13419
Stark KDC, Pękala A, Muellner P. Use of molecular and genomic data for disease surveillance in aquaculture: Towards improved evidence for decision making. Prev Vet Med. 2019; 167: 190-195.
doi:10.1016/j.prevetmed.2018.04.011
Fraser CM, Eisen JA, Salzberg SL. Microbial genome sequencing. Nature 2000; 406: 799-803.
doi:10.1038/35021244
Canica M, Manageiro V, Abriouel H, Moran-Gilad J, Franz CMAP. Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol. 2019; 84: 41-44.
doi:10.1016/j.tifs.2018.08.001
Weis CV, Jutzeler CR, Borgwardt K. Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review. Clin Microbiol Infect. 2020; 26(10): 1310-1317.
doi: 10.1016/j.cmi.2020.03.014
Vrioni G, Tsiamis C, Oikonomidis G, Theodoridou K, Kapsimali V, Tsakris A. MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: Current achievements and future perspectives. Ann Transl Med. 2018; 6(12): 1-14.
doi:10.21037/atm.2018.06.28
Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Method. 2017; 138: 20-29.
doi:10.1016/j.mimet.2016.09.003
Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target micro droplet growth assay. Clin Microbiol Infection. 2018; 24(7): 738-743.
doi: 10.1016/j.cmi.2017.10.016
Florio W, Tavanti A, Barnini S, Ghelardi E, Lupetti A. Recent advances and ongoing challenges in the diagnosis of microbial infections by MALDI-TOF mass spectrometry. Front Microbiol. 2018; 9:1097.
doi:10.3389/fmicb.2018.01097
Garayoa R, Abundancia C, Diez-Leturia M, Vitas AI. Essential tools for food safety surveillance in catering services: On-site inspections and control of high risk cross-contamination surfaces. Food Cont. 2017; 75: 48-54.
doi:10.1016/j.foodcont.2016.12.032
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015; 109(7): 309-318.
doi: 10.1179/2047773215Y.0000000030
More SJ. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir Vet J. 2020; 73: 212.
doi: 10.1186/s13620-019-0154-4
Birgand G, Castro-Sanchez E, Hansen S. et al. Comparison of governance approaches for the control of antimicrobial resistance: Analysis of three European countries. Antimicrob Resist Infect Control.2018; 7: 2-12.
doi: 10.1186/s13756-018-0321-5
Parsonage B, Hagglund PK, Keogh L, Wheelhouse N, Brown RE, Dancer SJ. Control of antimicrobial resistance requires an ethical approach. Front. Microbiol.2017; 8:2124.
doi: 10.3389/fmicb.2017.02124
Davies R, Wales A. Antimicrobial resistance on farms: A review including biosecurity and the potential role of disinfectants in resistance selection. Comp Rev Food Sci Food Safety. 2019; 18: 753-774.
doi:10.1111/1541-4337.12438
Gerbin CS. Enhancing US-Japan cooperation to combat antimicrobial resistance. Biosecur Bioterror. 2014; 12(6): 337-345.
doi: 10.1089/bsp.2014.0034
World Health Organization (WHO). Towards Enhanced Surveillance of Antimicrobial Resistance in the WHO African Region, 2013.avalible from:
https://www.afro.who.int/news/towards-enhanced-surveillance-antimicrobial-resistance-who-african-region, [Accessed 19 June 2020].
Donaghy JA, Jagadeesan B, Goodburn K, Grunwald L, Jensen ON, Jespers A, Kanagachandran K, Lafforgue H, Seefelder W, Quentin M-C . Relationship of sanitizers, disinfectants and cleaning agents with antimicrobial resistance. J Food Prot. 2019; 82 (5): 889-902.
doi:10.4315/0362-028X.JFP-18-373
Archibald LK, Reller LB. Clinical microbiology in developing countries. Emerg Infect Dis. 2001; 7(2): 302-305.
doi: 10.3201/eid0702.010232
Petti CA, Plage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: A barrier to effective health care. Clin Infect Dis. 2006; 42: 377-382.
doi:10.1086/499363
Stelling J, Read JS, Fritch W, O’Brien TF, Peters R, Clark A, Bokhari M, Lion M, Katwa P, Kelso P. Surveillance of antimicrobial resistance and evolving microbial populations in Vermont: 2011-2018. Expert Rev Anti-Infect Therapy. 2020; 18(10): 1055-1062.
doi:10.1080/14787210.2020.1776114
- Abstract Viewed: 564 times
- pdf Downloaded: 626 times