Applied Food Biotechnology
  • Register
  • Login
  • English
    • فارسی
    • العربية
    • 简体中文
    • Español (España)
    • Français (France)
  • Home
  • Issues
    • Current
    • Archives
    • Accepted Manuscripts
    • In Press
  • About the Journal
    • Editorial Team
    • Indexing & Abstracting
    • Privacy Statement
    • Reviewing Policies and Procedures
    • Plagiarism Policy
    • Archiving Policy
    • Contact
  • For Authors
    • Author Guidelines
    • Journal Cover Letter
    • Copyright Form
    • Conflict of Interest
    • Template of Research/Original Paper
  • Template of Research/Original Paper
  • Training Course
Advanced Search
  1. Home
  2. Archives
  3. Vol. 8 No. 2 (2021): Spring
  4. Original Article

Vol. 8 No. 2 (2021)

March 2021

Cholesterol Assimilation of Two Probiotic Strains of Lactobacillus casei used as Dairy Starter Cultures

  • Widodo Widodo
  • Taqy Haidar Fanani
  • Muhammad Irga Fahreza
  • Ari Surya Sukarno

Applied Food Biotechnology, Vol. 8 No. 2 (2021), 16 March 2021 , Page 103-112
https://doi.org/10.22037/afb.v8i2.30661 Published: 2021-03-16

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Widodo-1399.png

Background and Objective:

Consumption of milks fermented with lactic acid bacteria has been shown to improve lipid profiles; however, the mechanisms underlying this improvement are not clear. Using in vitro analyses, the aim of this study was to investigate how Lactobacillus casei strains AP and AG assimilate cholesterol.

Materials and Methods:

Bacterial growth in ox gall-supplemented media, quantity of assimilated cholesterol and activity of bile salt hydrolase were assessed in Lactobacillus casei strains AP and AG. Furthermore, cholesterol attachment to cell walls was assessed using scanning electron microscopy.

Results and Conclusions:

Lactobacillus casei AG showed a higher cholesterol assimilation (13.05 mg dl-1 ±0.48) than Lactobacillus casei AP (8.05 mg dl-1 ±0.48) as well as a faster growth rate of the former strain that that of the latter one. Growth inhibition of Lactobacillus casei AP was associated with increased activity of bile salt hydrolase (halo size of 1.62 mm ±0.20), compared to that of Lactobacillus casei AG (1.37 mm ±0.07) and upregulation of the bsh gene. High cholesterol assimilations by Lactobacillus casei AG seem to attribute to membrane attachment via resistance to bile acids.

Keywords:
  • ▪ Bile salt hydrolase
  • ▪ cholesterol attachment
  • ▪ Lactobacillus casei
  • ▪ probiotics
  • pdf

How to Cite

Widodo, W., Fanani, T. H., Fahreza, M. I., & Sukarno, A. S. (2021). Cholesterol Assimilation of Two Probiotic Strains of Lactobacillus casei used as Dairy Starter Cultures. Applied Food Biotechnology, 8(2), 103–112. https://doi.org/10.22037/afb.v8i2.30661
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Tomaro-Duchesneau C, Jones M L, Shah D, Jain P, Saha S, Prakash S. Cholesterol assimilation by lactobacillus probiotic bacteria: an in vitro investigation. BioMed Res Int. 2014:380316. doi:10.1155/2014/380316

Ooi L G and Liong M T. Cholesterol-lowering effects of probiotics and prebiotics : a review of in vivo and in vitro findings. Int J Mol Sci 2010:11(6):2499–2522. doi:10.3390/ijms11062499

Lye H S, Rahmat-Ali G R, Liong M T. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal 2010:20(3):169–175. doi:10.1016/j.idairyj.2009.10.003

Axelsson L. Lactic acid bacteria: classification and physiology. In: Lactic acid bacteria: microbiology and functional aspects, pp 1–67. Marcel Dekker, Inc, New York, 2004.

Chandan R C. Manufacturing yogurt and fermented milks. Blackwell Publishing Company, United States of America, 2006.

Havenaar R, Ten Brink B, Huis In’t Veld J H J. Selection of strains for probiotic use. In: Probiotics: the scientific, pp 151–170. R Basis & Fuller (Eds.), Chapman & Hall, London, UK, 1992.

Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan G C, Shanahan F, Collins J K. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr. 2001:73(2) Suppl., 386S-392S. doi:10.1093/ajcn/73.2.386s

Mann G V. Studies of a surfactant and cholesteremia in the Maasai. Am Jof Clin Nutr. 1974:27(5):464–469. doi:10.1093/ajcn/27.5.464

Pearce J. Effects of milk and fermented dairy products on the blood cholesterol content and profile of mammals in relation to coronary heart disease. Int Dairy J.1996:6(7):661–672. doi:10.1016/0958-6946(95)00011-9

Lin M, Chen T. Reduction of cholesterol by Lactobacillus acidophilus in culture broth. J Food Drug Anal. 2000:8(2):97–102.

Liong M T, Shah N P. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci. 2005:88(1):55–66. doi:10.3168/jds.S0022-0302(05)72662-X

Dal Bello F, Walter J, Hertel C, Hammes W P. In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. System Appl Microbiol. 2001:24(2):232–237. doi:10.1078/0723-2020-00033

Pigeon R M, Cuesta E P, Gililliand S E. Binding of free bile acids by cells of yogurt starter culture bacteria. J Dairy Sci. 85(11):2705–2710. doi:10.3168/jds.s0022-0302(02)74357-9

Soh H S, Kim C S, Lee S P. A new in vitro assay of cholesterol adsorption by food and microbial polysaccharides. J Med Food. 2003:6(3):225–230. doi:10.1089/10966200360716643

Maeda H, Mizumoto H, Suzuki M, Tsuji K. Effects of Kefiran-feeding on fecal cholesterol excretion, hepatic injury and intestinal histamine concentration in rats. Biosci Microflora: 2005:24(2):35–40. doi:10.12938/bifidus.24.35

Anderson J W, Allgood L D, Turner J, Oeltgen P R, Daggy B P. Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. Am J Clin Nutr. 1999:70(4):466–473. doi:10.1093/ajcn/70.4.466

Wolever T M S, Piekarz A, Hollands M, Younker K. Sugar alcohols and diabetes: a review. Can J Diabet. 2002:26(4):356–362.

Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res. 2015:56(7):1262–1270. doi:10.1194/jlr.R052704

Begley M, Hill C, Gahan C G M. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006:72(3):1729–1738. doi:10.1128/AEM.72.3.1729-1738.2006

Widodo W, Indratiningsih I, Widyantoro W, Pertiwi P A. Kemampuan Asimilasi kolesterol tiga strain Lactobacillus acidophilus Dalam Medium Cair Berkolesterol. Biota. 2012a:17(1):21–28. doi:10.24002/biota.v17i1.125

Widodo W, Anindita N S, Taufiq T T, Wahyuningsih T D. Evaluation of two lactobacillus strains as probiotics with emphasis in utilizing prebiotic inulin as energy source. Int J Microbiol. 2014: 5 33-40. doi: 10.14303/irjm.2014.016

Widodo W, Harsita P A, Sukarno A S, Nurrochmad A. Antidiabetic effect of milk fermented using intestinal probiotics. Nut Food Sci. 2019:49(6):1063-1074. doi:10.1108/NFS-11-2018-0326

Widodo W, Handaka R, Wahyuni E, Taufiq T T. The quality of fermented milk produced using intestinal-origin lactic acid bacteria as starters. Int Food Res J. 2017:24(6):2371-2376.

Klaver F A, Van Der Meer R. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol. 1993:59(4):1120–1124. doi:10.1128/AEM.59.4.1120-1124.1993

Allain T, Chaouch S, Thomas M, Vallee I, Buret A G, Langella P, Grellier P, Polack B, Bermudez-Humaran, L G, Florent I. Bile-salt-hydrolases from the probiotic strain Lactobacillus johnsonii La1 mediate anti-giardial activity in vitro and in vivo. Front Microbiol. 2018:31(8):8 2707. doi:10.3389/fmicb.2017.02707

Damodharan K, Lee Y S, Palaniyandi S A, Yang S H, Suh J-W. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front Microbiol. 2015:4(6):768. doi:10.3389/fmicb.2015.00768

Fadhilah A N, Hafsan H, Nur F. Penurunan Kadar Kolesterol oleh Bakteri Asam Laktat Asal Dangke Secara in vitro. Prosiding Seminar Nasional Mikrobiologi Kesehatan dan Lingkungan. 2015:174-180. Makassar.

Tahri K, Grill J P, Schneider F. Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria. Curr Microbiol. 1997:34(2): 79–84. doi:10.1007/s002849900148

Pereira D I A, Gibson G R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol. 2002:68(9):4689–4693. doi:10.1128/aem.68.9.4689-4693.2002

Tannock G W. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R and D. Trends Biotechnol. 1997:15(7):270–274. doi:10.1016/s0167-7799(97)01056-1

De Boever P, Verstraete W. Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J Appl Microbiol. 1999:87(3):345–352. doi:10.1046/j.1365-2672.1999.00019.x

Dambekodi P C, Gilliland S E. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J Dairy Sci. 1998:81(7):1818–1824. doi:10.3168/jds.S0022-0302(98)75751-0

Noh D O, Kim S H, Gilliland S E. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophillus ATCC43121. J Dairy Sci. 1997: 80(12):3107–3113. doi:10.3168/jds.S0022-0302(97)76281-7

Taranto M P, Sesma F, Pesce de Ruiz Holgado A, De Valdez. G F.Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri. Biotechnol Let 1997:19(9):845–847. doi:10.1023/A:1018373217429

Kimoto H, Ohmomo S, Okamoto T. Cholesterol removal from media by lactococci. J Dairy Sci. 2002:85(12):3182–3188. doi:10.3168/jds.S0022-0302(02)74406-8

Widodo W, T T, Taufiq E, Aryati A, Kurniawati A, Asmara W. Human origin Lactobacillus casei isolated from Indonesian infants demonstrating potential characteristics as probiotics in vitro Indones J Biotechnol. 2012:17(1):79–89. doi:10.22146/ijbiotech.7852

Pereira D I A, Mccartney A L, Gibson G R. An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl Environ Microbiol. 2003:69(8):4743–4752. doi:10.1128/aem.68.9.4689-4693.2002

  • Abstract Viewed: 1154 times
  • pdf Downloaded: 857 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Developed By

Open Journal Systems

Language

  • English
  • فارسی
  • العربية
  • 简体中文
  • Español (España)
  • Français (France)

Information

  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

AWT IMAGE

The journal of "Applied Food Biotechnology" is licensed under a  CC BY-NC 4.0. International License.

Powered by OJSPlus