Cholesterol Assimilation of Two Probiotic Strains of Lactobacillus casei used as Dairy Starter Cultures
Applied Food Biotechnology,
Vol. 8 No. 2 (2021),
16 March 2021
,
Page 103-112
https://doi.org/10.22037/afb.v8i2.30661
Abstract
Background and Objective:
Consumption of milks fermented with lactic acid bacteria has been shown to improve lipid profiles; however, the mechanisms underlying this improvement are not clear. Using in vitro analyses, the aim of this study was to investigate how Lactobacillus casei strains AP and AG assimilate cholesterol.
Materials and Methods:
Bacterial growth in ox gall-supplemented media, quantity of assimilated cholesterol and activity of bile salt hydrolase were assessed in Lactobacillus casei strains AP and AG. Furthermore, cholesterol attachment to cell walls was assessed using scanning electron microscopy.
Results and Conclusions:
Lactobacillus casei AG showed a higher cholesterol assimilation (13.05 mg dl-1 ±0.48) than Lactobacillus casei AP (8.05 mg dl-1 ±0.48) as well as a faster growth rate of the former strain that that of the latter one. Growth inhibition of Lactobacillus casei AP was associated with increased activity of bile salt hydrolase (halo size of 1.62 mm ±0.20), compared to that of Lactobacillus casei AG (1.37 mm ±0.07) and upregulation of the bsh gene. High cholesterol assimilations by Lactobacillus casei AG seem to attribute to membrane attachment via resistance to bile acids.
- ▪ Bile salt hydrolase
- ▪ cholesterol attachment
- ▪ Lactobacillus casei
- ▪ probiotics
How to Cite
References
Tomaro-Duchesneau C, Jones M L, Shah D, Jain P, Saha S, Prakash S. Cholesterol assimilation by lactobacillus probiotic bacteria: an in vitro investigation. BioMed Res Int. 2014:380316. doi:10.1155/2014/380316
Ooi L G and Liong M T. Cholesterol-lowering effects of probiotics and prebiotics : a review of in vivo and in vitro findings. Int J Mol Sci 2010:11(6):2499–2522. doi:10.3390/ijms11062499
Lye H S, Rahmat-Ali G R, Liong M T. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal 2010:20(3):169–175. doi:10.1016/j.idairyj.2009.10.003
Axelsson L. Lactic acid bacteria: classification and physiology. In: Lactic acid bacteria: microbiology and functional aspects, pp 1–67. Marcel Dekker, Inc, New York, 2004.
Chandan R C. Manufacturing yogurt and fermented milks. Blackwell Publishing Company, United States of America, 2006.
Havenaar R, Ten Brink B, Huis In’t Veld J H J. Selection of strains for probiotic use. In: Probiotics: the scientific, pp 151–170. R Basis & Fuller (Eds.), Chapman & Hall, London, UK, 1992.
Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan G C, Shanahan F, Collins J K. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr. 2001:73(2) Suppl., 386S-392S. doi:10.1093/ajcn/73.2.386s
Mann G V. Studies of a surfactant and cholesteremia in the Maasai. Am Jof Clin Nutr. 1974:27(5):464–469. doi:10.1093/ajcn/27.5.464
Pearce J. Effects of milk and fermented dairy products on the blood cholesterol content and profile of mammals in relation to coronary heart disease. Int Dairy J.1996:6(7):661–672. doi:10.1016/0958-6946(95)00011-9
Lin M, Chen T. Reduction of cholesterol by Lactobacillus acidophilus in culture broth. J Food Drug Anal. 2000:8(2):97–102.
Liong M T, Shah N P. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci. 2005:88(1):55–66. doi:10.3168/jds.S0022-0302(05)72662-X
Dal Bello F, Walter J, Hertel C, Hammes W P. In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. System Appl Microbiol. 2001:24(2):232–237. doi:10.1078/0723-2020-00033
Pigeon R M, Cuesta E P, Gililliand S E. Binding of free bile acids by cells of yogurt starter culture bacteria. J Dairy Sci. 85(11):2705–2710. doi:10.3168/jds.s0022-0302(02)74357-9
Soh H S, Kim C S, Lee S P. A new in vitro assay of cholesterol adsorption by food and microbial polysaccharides. J Med Food. 2003:6(3):225–230. doi:10.1089/10966200360716643
Maeda H, Mizumoto H, Suzuki M, Tsuji K. Effects of Kefiran-feeding on fecal cholesterol excretion, hepatic injury and intestinal histamine concentration in rats. Biosci Microflora: 2005:24(2):35–40. doi:10.12938/bifidus.24.35
Anderson J W, Allgood L D, Turner J, Oeltgen P R, Daggy B P. Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. Am J Clin Nutr. 1999:70(4):466–473. doi:10.1093/ajcn/70.4.466
Wolever T M S, Piekarz A, Hollands M, Younker K. Sugar alcohols and diabetes: a review. Can J Diabet. 2002:26(4):356–362.
Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res. 2015:56(7):1262–1270. doi:10.1194/jlr.R052704
Begley M, Hill C, Gahan C G M. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006:72(3):1729–1738. doi:10.1128/AEM.72.3.1729-1738.2006
Widodo W, Indratiningsih I, Widyantoro W, Pertiwi P A. Kemampuan Asimilasi kolesterol tiga strain Lactobacillus acidophilus Dalam Medium Cair Berkolesterol. Biota. 2012a:17(1):21–28. doi:10.24002/biota.v17i1.125
Widodo W, Anindita N S, Taufiq T T, Wahyuningsih T D. Evaluation of two lactobacillus strains as probiotics with emphasis in utilizing prebiotic inulin as energy source. Int J Microbiol. 2014: 5 33-40. doi: 10.14303/irjm.2014.016
Widodo W, Harsita P A, Sukarno A S, Nurrochmad A. Antidiabetic effect of milk fermented using intestinal probiotics. Nut Food Sci. 2019:49(6):1063-1074. doi:10.1108/NFS-11-2018-0326
Widodo W, Handaka R, Wahyuni E, Taufiq T T. The quality of fermented milk produced using intestinal-origin lactic acid bacteria as starters. Int Food Res J. 2017:24(6):2371-2376.
Klaver F A, Van Der Meer R. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol. 1993:59(4):1120–1124. doi:10.1128/AEM.59.4.1120-1124.1993
Allain T, Chaouch S, Thomas M, Vallee I, Buret A G, Langella P, Grellier P, Polack B, Bermudez-Humaran, L G, Florent I. Bile-salt-hydrolases from the probiotic strain Lactobacillus johnsonii La1 mediate anti-giardial activity in vitro and in vivo. Front Microbiol. 2018:31(8):8 2707. doi:10.3389/fmicb.2017.02707
Damodharan K, Lee Y S, Palaniyandi S A, Yang S H, Suh J-W. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front Microbiol. 2015:4(6):768. doi:10.3389/fmicb.2015.00768
Fadhilah A N, Hafsan H, Nur F. Penurunan Kadar Kolesterol oleh Bakteri Asam Laktat Asal Dangke Secara in vitro. Prosiding Seminar Nasional Mikrobiologi Kesehatan dan Lingkungan. 2015:174-180. Makassar.
Tahri K, Grill J P, Schneider F. Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria. Curr Microbiol. 1997:34(2): 79–84. doi:10.1007/s002849900148
Pereira D I A, Gibson G R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol. 2002:68(9):4689–4693. doi:10.1128/aem.68.9.4689-4693.2002
Tannock G W. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R and D. Trends Biotechnol. 1997:15(7):270–274. doi:10.1016/s0167-7799(97)01056-1
De Boever P, Verstraete W. Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J Appl Microbiol. 1999:87(3):345–352. doi:10.1046/j.1365-2672.1999.00019.x
Dambekodi P C, Gilliland S E. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J Dairy Sci. 1998:81(7):1818–1824. doi:10.3168/jds.S0022-0302(98)75751-0
Noh D O, Kim S H, Gilliland S E. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophillus ATCC43121. J Dairy Sci. 1997: 80(12):3107–3113. doi:10.3168/jds.S0022-0302(97)76281-7
Taranto M P, Sesma F, Pesce de Ruiz Holgado A, De Valdez. G F.Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri. Biotechnol Let 1997:19(9):845–847. doi:10.1023/A:1018373217429
Kimoto H, Ohmomo S, Okamoto T. Cholesterol removal from media by lactococci. J Dairy Sci. 2002:85(12):3182–3188. doi:10.3168/jds.S0022-0302(02)74406-8
Widodo W, T T, Taufiq E, Aryati A, Kurniawati A, Asmara W. Human origin Lactobacillus casei isolated from Indonesian infants demonstrating potential characteristics as probiotics in vitro Indones J Biotechnol. 2012:17(1):79–89. doi:10.22146/ijbiotech.7852
Pereira D I A, Mccartney A L, Gibson G R. An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl Environ Microbiol. 2003:69(8):4743–4752. doi:10.1128/aem.68.9.4689-4693.2002
- Abstract Viewed: 876 times
- pdf Downloaded: 732 times