Bacterial Production of PHAs from Lipid-Rich by-Products
Applied Food Biotechnology,
Vol. 6 No. 1 (2019),
2 January 2019
,
Page 45-52
https://doi.org/10.22037/afb.v6i1.22246
Abstract
Background and Objective: Due to oil shortage and environmental problems, synthetic plastics will surely be replaced by alternative, biodegradable materials. A possible good example could be polyhydroxyalkanoates, and the inexpensive agricultural fatty byproducts could be usefully converted to polyhydroxyalkanoates by properly selected and/or developed microbes.
Material and Methods: Among the more common by-products available, a variety of lipid-rich residues have been explored as substrate, such as crude glycerol from biodiesel, biodiesel obtained from fatty residues, and, from slaughterhouse, bacon rind, udder and tallow. In this paper, several new isolates and collection PHA-producing microbes have been screened for both lipolytic activities and polyhydroxyalkanoates production. The soil proved to be the most promising mining place to find new interesting microbial species, even better than more specific and selective environments such as slaughterhouses.
Results and Conclusion: Remarkably, two of the collection strains used here, known to be polyhydroxyalkanoates producers, resulted as really promising, being able to grow directly on all the substrates tested and to produce variable amounts of the polymer, including the co-polymers P (3HB-co-3HV).
Conflict of interest: The authors declare no conflict of interest.
- ▪ Cupriavidus necator ▪ Lipase activity ▪ Lipid waste ▪ Pseudomonas oleovorans ▪ Polyhydroxyalkanoates
How to Cite
References
Reddy CSK, Ghai R, Rashmi Kalia VC. Polyhydroxyalkanoates: An overview. Bioresource Technol. 2003; 87:-
-146. doi: 10.1016/S0960-8524(02)00212-2
Muhammadi SAM, Hameed S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev. 2015; 8(3-
: 56-77. doi: 10.1080/17518253.2015.1109715
Koller M. Poly (hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Appl Food Biotechnol. 2014; 1(1): 3-15. doi: 10.22037/afb.v1i1.7127
Koller M. Biodegradable and biocompatible polyhydroxyalkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018; 23(2): 362. doi: 10.3390/molecules23020362
Gamero JER, Favaro L, Pizzocchero V, Lomolino G, Basaglia M, Casella S. Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing. Bioresource Technol. 2018; 261: 176-181. doi: 10.1016/j.biortech.2018.04.021
Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters
in a sustainable manner. New Biotechnol. 2017; 37: 24-38. doi: 10.1016/j.nbt.2016.05.001
Alibardi L, Green K, Favaro L, Vale P, Soares A, Cartmell E, Fernandez YB. Performance and stability of sewage sludge
digestion under CO2 enrichment: a pilot study. Bioresource Technol. 2017; 245: 581-589. doi: 10.1016/j.biortech.2017.08.071
Cripwell R, Favaro L, Rose SH, Basaglia M, Cagnin L, Casella S, van Zyl W. Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Appl Energ. 2015; 160: 610-617. doi: 10.1016/j.apenergy.2015.09.062
Favaro L, Cagnin L, Basaglia M, Pizzocchero V, van Zyl WH, Casella S. Production of bioethanol from multiple waste streams of rice milling. Bioresource Technol. 2017; 244: 151-159. doi: 10.1016/j.biortech.2017.07.108
Favaro L, Jooste T, Basaglia M, Rose SH, Saayman M, Gorgens JF, Casella S, van Zyl W.H. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol. Bioengineered. 2013; 4:97-102. doi: 10.4161/bioe.22268
Schirru S, Favaro L, Mangia NP, Basaglia M, Casella S, Comunian R, Fancello F, de Melo Franco BDG, de Souza Oliveira RP, Todorov SD. Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium. Ann Microbiol. 2014; 64: 321-331. doi: 10.1007/s13213-013-0667-0
Scott E, Peter F, Sanders J. Biomass in the manufacture of industrial products: The use of proteins and amino acids. Appl Microbiol Biotechnol. 2007; 75: 751-762. doi: 10.1007/s00253-007-0932-x
Shah AT, Favaro L, Alibardi L, Cagnin L, Sandon A, Cossu R, Casella S, Basaglia M. Bacillus sp. strains to produce biohydrogen from the organic fraction of municipal solid waste. Appl Energ. 2016; 176: 116-124. doi: 10.1016/j.apenergy.2016.05.054
Abbondanzi F, Biscaro G, Carvalho G, Favaro L, Lemos P, Paglione M., Samori C, Torri C. Fast method for the determination of short-chain-length polyhydroxyalkanoates (scl-PHAs) in bacterial samples by In Vial-Thermolysis (IVT). New Biotechnol. 2017; 39: 29-35. doi: 10.1016/j.nbt.2017.05.012
Bozorg A, Vossoughi M, Kazemi A, Alemzadeh I. Optimal medium composition to enhance poly-β-hydroxybutyrate production by Ralstonia eutropha using cane molasses as sole carbon source. Appl Food Biotechnol. 2015; 2(3): 39-47. doi: 10.22037/afb.v2i3.8883
Casella S, Favaro L, Basaglia M. Bacterial Genetic Modifications for Improving Polyhydroxyalkanoates Production from Inexpensive Carbon Sources. In: Koller, M. (Ed.), Recent Advances in Biotechnology Volume 1:Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and Metabolism. Bentham eBooks. 2016; pp. 380-435. doi: 10.2174/97816810832541160101
Povolo S, Romanelli MG, Basaglia M, Ilieva VI, Corti A, Morelli A, Chiellini E, Casella S. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. New Biotechnol, 2013; 30(6): 629-634. doi: 10.2174/97816810832541160101
Vargas A, Montano L, Amaya R. Enhanced polyhydroxyalkanoate production from organic wastes via process control. Bioresource Technol. 2014; 156, 248-255. doi: 10.1016/j.biortech.2014.01.045
Biermann U, Bornscheuer U, Meier MA, Metzger JO, Schafer HJ. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed. 2011; 50(17): 3854-3871. doi: 10.1002/anie.201002767
Favaro L, Basaglia M, Saayman M, Rose S, van Zyl WH, Casella S. Engineering amylolytic yeasts for industrial bioethanol production. Chem Engineer Trans.2010; 20: 97-102. doi: 10.3303/CET1020017
Ebrahimi S, Najafpour GD, Ardestani F. Transesterification of waste cooking sunflower oil by porcine pancreas lipase using response surface methodology for biodiesel production. Appl Food Biotechnol. 2017; 4(4): 203-210. doi: 10.22037/afb.v4i4.16904
Favaro L, Basaglia M, Casella S. Improving polyhydroxyalkanoates production from inexpensive carbon sources by genetic approaches: A review. Biofuel Bioprod Bior. 2018. doi: 10.1002/bbb.1944.
Thinagaran L, Sudesh K. Evaluation of sludge palm oil as feedstock and development of efficient method for its utilization to produce polyhydroxyalkanoate. Waste Biomass Valori. 2017; 1-12. doi: 10.1007/s12649-017-0078-8
Riedel SL, Jahns S, Koenig S, Bock MC, Brigham CJ, Bader J, Stahl U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol. 2015; 214: 119-127. doi: 10.1016/j.jbiotec.2015.09.002
Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Rashid MI, Koller M. Techno-economic feasibility of waste biorefinery: using slaughtering waste streams as starting material for biopolyester production. Waste Manage. 2017; 67: 73-85.
doi: 10.1016/j.wasman.2017.05.047
Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Pol. 2012; 14: 495-503. doi: 10.1007/s10098-012-0464-7
Romanelli MG, Povolo S, Favaro L, Fontana F, Basaglia M, Casella S. Engineering Delftia acidovorans DSM39 to produce polyhydroxyalkanoates from slaughterhouse waste. Int J Biol Macromol. 2014; 71: 21-27. doi: 10.1016/j.ijbiomac.2014.03.049
Povolo S, Romanelli MG, Fontana F, Basaglia M, Casella S. Production of polyhydroxyalkanoates from fatty wastes. J Polym Environ. 2012; 20: 944. doi: 10.1007/s10924-012-0485-7
Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA. Production of poly-(beta-hydroxybutyric-cobeta-hydroxyvaleric) acids. Appl Environ Microbiol. 1990; 56: 2093-2098.
Kouker G, Jaeger KE. Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol. 1987; 53: 211-213.
Sambroock J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd edition, Cold Spring Harbour Laboratory, Cold Spring Harbour. New York , 1989
Weidner S, Arnold W, Stackbrandt E, Puhler A. Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb Ecol. 2000; 39: 22-31. doi: 10.1007/s002489900194
Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM. The RDP (ribosomal database project) continues. Nucleic Acids Res. 2000; 28: 173-174.
Povolo S, Toffano P, Basaglia M, Casella S. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresource Technol. 2010; 101: 7902-7907. doi: 10.1016/j.biortech.2010.05.029
Pinsirodom P, Parkin KL. Current Protocols in Food Analytical Chemistry. Wiley, London. 2001: pp C3.1.1-C3.1.13.
Braunegg G, Sonnleitner B, Lafferty MR. A rapid gas chromatographic method for the determination of polyhydroxybutyric acid in microbial biomass. European J Appl Microbiol Biotechnol. 1978; 6: 29. doi: 10.1007/BF00500854
Povolo S, Basaglia M, Fontana F, Morelli A, and Casella S. Poly (hydroxyalkanoate) production by Cupriavidus necator from fatty waste can be enhanced by phaZ1 inactivation. Chem Biochem Eng Q. 2015; 29 (2): 67-74. doi: 10.15255/CABEQ.2014.2248
Koller M, Bona R, Chiellini E, Fernandes E, Horvat H, Kutschera C, Hesse P, Braunegg G. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technol. 2008; 99: 4854. doi: 10.1016/j.biortech.2007.09.049
Koller M, Salerno A, Strohmeier K, Schober S, Mittelbach M, Illieva V, Chiellini E, Braunegg G. Novel precursors for production of 3-hydroxyvalerate-containing poly [(R)-hydroxyalkanoate]s. Biocatal Biotransfor. 2014, 32.3: 161-167.
doi: 10.3109/10242422.2014.913580
Samori C, Basaglia M, Casella S, Favaro L, Galletti P, Giorgini L, Marchi D, Mazzocchetti L, Torri C, Tagliavini E. Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of poly-hydroxyalkanoates from microbial biomass. Green Chem. 2015; 17:1047. doi: 10.1039/C4GC01821D
Kozhevnikov I, Volova T, Hai T and Steinbuchel A. Cloning and molecular organization of the polyhydroxyalkanoic acid synthase gene (phaC) of Ralstonia eutropha strain B5786. Appl Biochem Microbiol. 2010; 46: 140-147. doi: 10.1134/S0003683810020031
Timm A, Wiese S, Steinbüchel A. A general method for identification of polyhydroxyalkanoic acid synthase genes from pseudomonads belonging to the rRNA homology group I. Appl Microbiol Biotechnol. 1994; 40: 669-675. doi: 10.1007/BF00173327
- Abstract Viewed: 1447 times
- PDF Downloaded: 1188 times