Biocomposites Based on Polyhydroxyalkanoates and Natural Fibres from Renewable Byproducts
Applied Food Biotechnology,
Vol. 6 No. 1 (2019),
2 January 2019
,
Page 35-43
https://doi.org/10.22037/afb.v6i1.22039
Abstract
Background and Objective: The use of biopolyesters and natural fibres or fillers for production of biobased composites has attracted interest of various application sectors ranging from packaging to automotive components and other high value applications in agreement with a bioeconomy approach. In the present paper biobased composites were produced by using compostable polymers degradable even in soil and marine water such as polyhydroxyalkanoates with natural fibres or fillers derived by food wastes (legumes by-products) and by wood industry.
Material and Methods: Polyhydroxyalkanoates were processed with a biobased, biodegradable plasticizer such as acetyltributylcitrate and calcium carbonate as inorganic filler. The selected polymeric matrix was used for the production of composites with variable amounts of natural fibres. Green composites were manufactured by extrusion and injection moulding. Thermal, rheological, mechanical and morphological characterizations of the developed composites were performed.
Results and Conclusion: The bio composites properties match the requirements for production of rigid food packaging or other single use items where the market is looking for more sustainable solutions versus the products actually used and hardly recyclable, opening a route for valorization of food residue. Pukanzsky’s model predicts with good accuracy the tensile behavior of the composites showing a medium intensity adhesion between fibres and polymer matrix in both cases analyzed.
Conflict of interest: The authors declare no conflict of interest.
- ▪ Polyhydroxyalkanoates ▪ Biocomposites ▪ Food by-products ▪ Mechanical properties ▪ Pukanzsky’s model
How to Cite
References
Muthuraj R, Misra M, Mohanty AK. Biocomposites. Elsevier; 2015. doi:10.1016/B978-1-78242-373-7.00014-7.
J. H. Song, R. J. Murphy, R. Narayan and G. B. H. Davies. Biodegradable and compostable alternatives to conventional plastics Phil. Trans. R. Soc. B 2009 364, 2127
Andrew G. Composite Materials Processing. Kirk‐Othmer Encycl Chem Technol 2015. doi:10.1002/0471238961.koe00007.
Khiari R, Mhenni MF, Belgacem MN, Mauret E. Chemical composition and pulping of date palm rachis and Posidonia oceanica – a comparison with other wood and non-wood fibre sources. Bioresour Technol 2010; 101:775–80.
Rapa M., Popa M.E., Cinelli P., Lazzeri A., Bunrichi R., Mitelut A., Grosu E., Biodegradable alternative to plastics for agriculture application, Romanian Biotechnological Letters, 16(6), 59-64. 2011,
Padovani, G.; Carlozzi, P.; Seggiani, M.; Cinelli, P.; Vitolo, S.; Lazzeri, A. PHB-rich biomass and BioH2 production by means of photosynthetic microorganisms. Chem. Eng. Trans. 2016, 49, 55–60.
Lakshman, K.; Shamala, T.R. Enhanced biosynthesis of polyhydroxyalkanoates in a mutant strain of Rhizobium Meliloti. Biotechnol. Lett. 2003, 25, 115–119.
Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. The Main Characteristics, Properties, Improvements, and Market Data of Polyhydroxyalkanoates. In Handbook of Sustainable Polymers Processing and Applications; Thakur, V.K., Thaku, M.K., Eds.; Pan Stanford: 6000 Broken Sound Pkwy, NW, USA, 2015; Chapter 24; pp. 899–928.
Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of synthesis,characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808.
Doi, Y.; Kanesawa, Y.; Tanahashi, N.; Kumagai, Y. Biodegradation of microbial polyesters in the marine environment. Polym. Degrad. Stab. 1992, 36, 173–177.
Ferrero, B.; Boronat, T.; Moriana, R.; Fenollar, O.;
Balart, R. Green composites based on wheat gluten matrix and Posidonia oceanica waste fibers as reinforcements. Polym. Compos. 2013, 34, 1663–1669.
Chiellini, E.; Cinelli, P.; Imam, S.H.; Mao, L. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization. Biomacromolecules 2001, 2, 1029–1037.
Chiellini, E.; Cinelli, P.; Chiellini, F.; Imam, S.H. Environmentally degradable biobased polymeric blends & composites. Macromol. Biosci. 2004, 4, 218–231.
S.H. Imam, P. Cinelli, S.H. Gordon, E. Chiellini, Journal of Polymers and the Environment, “Characterization of Biodegradable Composite Films Prepared from Blends of Poly(Vinyl Alcohol), Cornstarch, and Lignocellulosic Fiber” 2005, 13, 47-55
E. Chiellini, P. Cinelli, S.H. Imam, L. Mao. Biomacromolecules, , “Composite Films Based on Biorelated Agro-Industrial Waste and Poly(vinyl alcohol). Preparation and Mechanical Properties Characterization”. 2001, 2, 1029-1037
Seggiani, M.; Cinelli, P.; Verstichel, S.; Puccini, M.; Vitolo, S.; Anguillesi, I.; Lazzeri, A. Development of fibres-reinforced biodegradable composites. Chem. Eng. Trans. 2015, 43, 1813–1815.
Seggiani M., Cinelli P., Mallegni N., Balestri E., Puccini M., Vitolo S., Lardicci C., Lazzeri A., New bio-composites based on Polyhydroxyalkanoates and Posidonia oceanica fibres for application in marine environment Materials. 10, 326; 2017 doi:10.3390/ma10040326.
Angelini L.G., Scalabrelli M., Tavarini S.; Cinelli P., Anguillesi I., Lazzeri A., Ramie fibers in a comparison between chemical and microbiological retting proposed for application in biocomposites Industrial Crops and Products, 75, 178-184, 2015
Seggiani, M.; Cinelli, P.; Verstichel, S.; Puccini, M.; Vitolo, S.; Anguillesi, I.; Lazzeri, A. Development of fibres-reinforced biodegradable composites. Chem. Eng. Trans. 2015, 43, 1813–1815.
Seggiani M, Cinelli P, Balestri E, Mallegni N, Stefanelli E, Rossi A, Lardicci C, Lazzeri A. Novel Sustainable Composites Based on Poly(hydroxybutyrate-co-hydroxyvalerate) and Seagrass Beach-CAST Fibers: Performance and Degradability in Marine Environments. Materials. 2018; 11(5):772.
Chen, Yun "Pea starch‐based composite films with pea hull fibers and pea hull fiber‐derived nanowhiskers." Polymer Engineering & Science 49.2 (2009): 369-378.
Ralet MCM-C, Della Valle G, Thibauit J-F, Thibault JF. Raw and extruded fibre from pea hull: Part I: Composition and physicochemical properties. Carbohydr Polym 1993;20:17
Gigante V, Aliotta L, Phuong VT, Coltelli MB, Cinelli P, Lazzeri A. Effects of waviness on fiber-length distribution and interfacial shear strength of natural fibers reinforced composites. Compos Sci Technol 2017;152:129–38. doi:10.1016/j.compscitech.2017.09.008.
Pukánszky B. Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 1990;21:255–62.
Clyne TW. A simple development of the shear lag theory appropriate for composites with a relatively small modulus mismatch. Mater Sci Eng A 1989;122:183–92. doi:10.1016/0921-5093(89)90629-1.
Starink MJ, Syngellakis S. Shear lag models for discontinuous composites: Fibre end stresses and weak interface layers. Mater Sci Eng A 1999;270:270–7.
Kim H.G., Effects of fiber aspect ratio Evalueted by Elastic analysis in discontinuous composites, J. Mech. Sci. Techol. 2008; 22:411-419
Renner K, Kenyó, Móczó J, Pukánszky B, Micromechanical deformation processes in PP/wood composites: Particle characteristics, adhesion, mechanisms, Composites: Part 2010;A 41:1653–1661.
Ganster J, Fink K.P., Novel cellulose fibre reinforced thermoplastic materials. Cellulose 2006;13:271–280.
Mieck K.P, Reußmann T, Hauspurg , Correlations for the fracture work and falling weight impact properties of thermoplastic natural/long fibre composites. Mater. Werkst. 2000;31:169–174.
Graupner N, Müssig, JA, comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos. Part A Appl. Sci. Manuf. 2011;42:2010–2019.
Phuong VT, Gigante V, Aliotta L, Coltelli MB, Cinelli P, Lazzeri A. Reactively extruded ecocomposites based on poly(lactic acid)/bisphenol A polycarbonate blends reinforced with regenerated cellulose microfibers. Compos Sci Technol 2017;139:127–37. doi:10.1016/j.compscitech.2016.12.013.
Kim HG, Kwac LK. Evaluation of elastic modulus for unidirectionally aligned short fiber composites. J Mech Sci Technol 2009;23:54–63. doi:10.1007/s12206-008-0810-1.
Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 1952;3:72–9. doi:10.1088/0508-3443/3/3/302.
Lazzeri A. Phuong V., Dependence of the Pukánszky’s interaction parameter B on the interface shear strength (IFSS) of nanofiller- and short fiber-reinforced polymer composites, Composites Science and Technology 93 (2014) 106–113
- Abstract Viewed: 1545 times
- PDF Downloaded: 1369 times