Production of Medium-Chain Length Polyhydroxyalkanoates by Pseudomonas citronellolis Grown in Apple Pulp Waste
Applied Food Biotechnology,
Vol. 6 No. 1 (2019),
2 January 2019
,
Page 71-82
https://doi.org/10.22037/afb.v6i1.21793
Abstract
Background and objective: Apple pulp waste generated by the fruit processing industry is a sugar-rich material with great potential to be used as a feedstock for production of value added microbial products. The aim of this work was to use this feedstock for the cultivation of Pseudomonas citronellolis and production of medium-chain-length polyhydroxyalkanoates, a natural elastomer.
Material and methods: The solid fraction of the apple pulp waste was discarded and the soluble fraction, rich in fructose (17.7 g l-1), glucose (7.5 g l-1) and sucrose (1.2 g l-1), was used for the batch bioreactor cultivation of Pseudomonas citronellolis NRRL B-2504.
Results and conclusion: Pseudomonas citronellolis reached a polymer content in the biomass of 30% wt and a volumetric productivity of 0.025 g l-1 h-1. The polymer was mainly composed of 3-hydroxydecanoate (68% mol) and 3-hydroxyoctanoate (22% mol), with minor contents of 3-hydroxydodecanoate (5% mol), 3-hydroxytetradecanoate (4% mol) and 3-hydroxyhexanoate (1% mol), and had a molecular weight of 3.7×105 Da. It presented glass transition and melting temperatures of -12 and 53°C, respectively, and a thermal degradation temperature of 296°C. The polymer’s films were dense, ductile and permeable to oxygen and carbon dioxide. These results demonstrated that apple pulp waste is a suitable feedstock for the production of a biopolymer with properties that render it a promising alternative to some synthetic petrochemical-derived polyesters.
Conflict of interest: The authors declare no conflict of interest.
- ▪ Apple pulp waste ▪ Medium-chain-length polyhydroxyalkanoates (mcl- PHA) ▪ Pseudomonas citronellolis ▪ Waste valorization
How to Cite
References
Bhushan S, Kalia K, Sharma M, Singh B, Ahuja PS. Processing of apple pomace for bioactive molecules. Crit Rev Biotechnol. 2008;28(4):285–96. doi: 10.1080/07388550802368895.
Federici F, Fava F, Kalogerakis N, Mantzavinos D. Valorisation of agro-industrial by-products, effluents and waste: Concept, opportunities and the case of olive mill waste waters. J Chem Technol Biotechnol. 2009;84(6):895–900. doi: 10.1002/jctb.2165.
Evcan E, Tari C. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy. 2015;88:775–82. doi: 10.1016/j.energy.2015.05.090.
Follonier S, Goyder MS, Silvestri AC, Crelier S, Kalman F, Riesen R, Zinn M. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int J Biol Macromol. 2014;71:42–52. doi: 10.1016/j.ijbiomac.2014.05.061.
Wang X, Lu X. Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water. Carbohydr Polym. 2014;102(1):174–84. doi: 10.1016/j.carbpol.2013.11.012.
Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL. Apple pomace: A versatile substrate for biotechnological applications. Crit Rev Biotechnol. 2008;28(1):1–12. doi: 10.1080/07388550801913840.
Cruz MV., Araújo D, Alves VD, Freitas F, Reis MAM. Characterization of medium chain length polyhydroxyalkanoate produced from olive oil deodorizer distillate. Int J Biol Macromol. 2016;82:243–8. doi: 10.1016/j.ijbiomac.2015.10.043.
Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol. 2013;165(1):45–51. doi: 10.1016/j.jbiotec.2013.02.003.
Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. 2016;89:161–74. doi: 10.1016/j.ijbiomac.2016.04.069.
Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecień M, Adamus G, Kowalczuk M, Strohmeier K, Schober S, Mittelbach M, Koller M. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym. 2013;73(10):1391–8. doi: 10.1016/j.reactfunctpolym.2012.12.009.
Kang DK, Lee CR, Lee SH, Bae JH, Park YK, Rhee YH, Sung BH, Sohn JH. Production of polyhydroxyalkanoates from sludge palm oil using Pseudomonas putida S12. J Microbiol Biotechnol. 2017;27(5):990–4. doi: 10.4014/jmb.1612.12031.
Cruz MV, Freitas F, Paiva A, Mano F, Dionísio M, Ramos AM, Reis MAM. Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. N Biotechnol. 2016;33(1):206–15. doi: 10.1016/j.nbt.2015.05.005.
Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MAM. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol. 2014;71:117–23. doi: 10.1016/j.ijbiomac.2014.04.016.
Cromwick AM., Foglia T, Lenz RW. The microbial production of poly(hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol. 1996;46:464–9. doi: 10.1007/s002530050845.
Morais C, Freitas F, Cruz M V., Paiva A, Dionísio M, Reis MAM. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates. Int J Biol Macromol. 2014;71:68–73. doi: 10.1016/j.ijbiomac.2014.04.044.
Ashby RD, Solaiman DKY. Poly(hydroxyalkanoate) biosynthesis from crude alaskan pollock (Theragra chalcogramma) oil. J Polym Environ. 2008;16(4):221–9. doi: 10.1007/s10924-008-0108-5.
Pappalardo F, Fragalà M, Mineo PG, Damigella A, Catara AF, Palmeri R, Rescifina A. Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Int J Biol Macromol. 2014;65:89–96. doi: 10.1016/j.ijbiomac.2014.01.014.
Chardron S, Bruzaud S, Lignot B, Elain A, Sire O. Characterization of bionanocomposites based on medium chain length polyhydroxyalkanoates synthesized by Pseudomonas oleovorans. Polym Test. 2010;29(8):966–71. doi: 10.1016/j.polymertesting.2010.08.009.
Miura T, Ishii D, Nakaoki T. Production of poly(3-hydroxyalkanoate)s by Pseudomonas putida cultivated in a glycerol/nonanoic acid-containing medium. J Polym Environ. 2013;21(3):760–5. doi: 10.1007/s10924-013-0588-9.
He W, Tian W, Zhang G, Chen G-Q, Zhang Z. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett. 1998;169(1):45–9. doi: 10.1111/j.1574-6968.1998.tb13297.x.
Guo-Qiang C, Jun X, Qiong W, Zengming Z, Kwok-Ping H. Synthesis of copolyesters consisting of medium-chain-length β-hydroxyalkanoates by Pseudomonas stutzeri 1317. React Funct Polym. 2001;48(1–3):107–12. doi: 10.1016/S1381-5148(01)00042-6.
Gumel AM. Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida. Brazilian J Microbiol. 2014;45(2):427–38. doi: 10.1590/S1517-83822014000200009.
Xu J, Guo BH, Yang R, Wu Q, Chen GQ, Zhang ZM. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer. 2002;43(25):6893–9. doi: 10.1016/S0032-3861(02)00615-8.
Guo W, Duan J, Geng W, Feng J, Wang S, Song C. Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity. Microbiol Res. 2013;168(4):231–7. doi: 10.1016/j.micres.2012.11.003.
Hong K, Sun S, Tian W, Chen GQ, Huang W. A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy. Appl Microbiol Biotechnol. 1999;51(4):523–6. doi: 10.1007/s002530051427.
Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y. Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers. 2014;6(3):706–54. doi: 10.3390/polym6030706.
Weng YX, Wang Y, Wang XL, Wang YZ. Biodegradation behavior of PHBV films in a pilot-scale composting condition. Polym Test. 2010;29(5):579–87. doi: 10.1016/j.polymertesting.2010.04.002.
Shamala TR, Divyashree MS, Davis R, Kumari KSL, Vijayendra SVN, Raj B. Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian J Microbiol. 2009;49(3):251–8. doi: 10.1007/s12088-009-0031-z.
Liu Q, Luo G, Zhou XR, Chen GQ. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng. 2011;13(1):11–7. doi: 10.1016/j.ymben.2010.10.004.
Kansiz M, Domínguez-Vidal A, McNaughton D, Lendl B. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Anal Bioanal Chem.
;388(5–6):1207–13. doi: 10.1007/s00216-007-1337-5.
Jung YC, Bhushan B. Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity. Nanotechnology. 2006;17(19):4970–80. doi: 10.1088/0957-4484/17/19/033.
Tan IKP, Sudesh Kumar K, Theanmalar M, Gan SN, Gordon B. Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl Microbiol Biotechnol. 1997;47(3):207–11. doi: 10.1007/s002530050914.
Zheng Z, Bei F, Tian H, Chen G. Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. 2005;26:3537–48. doi: 10.1016/j.biomaterials.2004.09.041.
Naveen SV, Tan IKP, Goh YS, Balaji Raghavendran HR, Murali MR, Kamarul T. Unmodified medium chain length polyhydroxyalkanoate (uMCL-PHA) as a thin film for tissue engineering application - Characterization and in vitro biocompatibility. Mater Lett. 2015;141:55–8. doi: 10.1016/j.matlet.2014.10.144.
Jones V, Grey J, Harding K. ABC of wound healing: Wound dressings. Br Med J. 2006;332 (7544):777–80. doi: 10.1136/bmj.332.7544.777.
Busscher HJ, Geertsema-Doornbusch GI, Van der Mei HC. Adhesion to silicone rubber of yeasts and bacteria isolated from voice prostheses: Influence of salivary conditioning films. J Biomed Mater Res. 1997;34(2):201–10.
Donelli I, Taddei P, Smet PF, Poelman D, Nierstrasz VA, Freddi G. Enzymatic surface modification and functionalization of PET: A water contact angle, FTIR, and fluorescence spectroscopy study. Biotechnol Bioeng. 2009;103(5):845–56. doi: 10.1002/bit.22316.
Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA. Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol. 2012;72(2):305–13. doi: 10.1016/j.compscitech.2011.11.018.
Cui N, Brown NMD. Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. App Surf Sci. 2002;189:31–38. doi: 10.1016/S0169-4332(01)01035-2.
Fernández-Berridi MJ, González N, Mugica A, Bernicot C. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim Acta. 2006;444(1):65–70. doi: 10.1016/j.tca.2006.02.027
Boutroy N, Pernel Y, Rius JM, Auger F, von Bardeleben HJ, Cantin JL, Abel F, Zeinert A, Casiraghi C, Ferrari AC, Robertson J. Hydrogenated amorphous carbon film coating of PET bottles for gas diffusion barriers. Diam Relat Mater. 2006;15(4–8):921–7. doi: 10.1016/j.diamond.2005.10.049.
Stephen R, Thomas S, Joseph K. Gas permeation studies of natural rubber and carboxylated styrene-butadiene rubber latex membranes. J Appl Polym Sci. 2005;98(3):1125–34. doi: 10.1002/app.22075.
Sanchez-Garcia MD, Gimenez E, Lagaron JM. Novel PET nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J Plast Film Sheeting. 2007;23(2):133–48. doi: 10.1177/8756087907083590.
Zhang H, Cloud A. The permeability characteristics of silicone rubber. SAMPE Fall Tech Conf "Global Adv Mater Process Eng. 2006;72–5.
Cruz MV., Paiva A, Lisboa P, Freitas F, Alves VD, Simões P, Barreiros S, Reis MAM. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour Technol. 2014;157:360–3. doi: 10.1016/j.biortech.2014.02.013.
Liu W, Chen GQ. Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol. 2007;76(5):1153–9. doi: 10.1007/s00253-007-1092-8.
Chea V, Angellier-Coussy H, Peyron S, Kemmer D, Gontard N. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging: Physical-chemical and structural stability under food contact conditions. J Appl Polym Sci. 2016;133(2):1–8. doi: 10.1002/app.41850.
Botta L, Mistretta MC, Palermo S, Fragalà M, Pappalardo F. Characterization and processability of blends of polylactide acid with a new biodegradable medium-chain-length polyhydroxyalkanoate. J Polym Environ. 2015;23(4):478–86. doi: 10.1007/s10924-015-0729-4.
Tripathi L, Wu L-P, Chen J, Chen G-Q. Synthesis of Diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Fact. 2012;11(1):44. doi: 10.1186/1475-2859-11-44.
Villaluenga JPG, Khayet M, López-Manchado MA, Valentin JL, Seoane B, Mengual JI. Gas transport properties of polypropylene/clay composite membranes. Eur Polym J. 2007;43(4):1132–43. doi: 10.1016/j.eurpolymj.2007.01.018.
- Abstract Viewed: 2039 times
- PDF Downloaded: 1491 times