Camelina Oil as a Promising Substrate for mcl-PHA Production in Pseudomonas sp. Cultures
Applied Food Biotechnology,
Vol. 6 No. 1 (2019),
2 January 2019
,
Page 61-70
https://doi.org/10.22037/afb.v6i1.21635
Abstract
Background and objective: Polyhydroxyalkanoates are biodegradable polyesters synthesized by some prokaryotic organisms from renewable sources. Medium-chain-length Polyhydroxyalkanoates show interesting properties as elastic and adhesive specialty polymers. Medium-chain-length Polyhydroxyalkanoates producers such as Pseudomonas sp. have demonstrated high yields on fats and oils. Camelina sativa is non-food chain competing crop, whose seed contain about 43% (w w-1) oil in dry matter with about 90% (w w-1) of unsaturated fatty acids. Camelina oil was for the first time tested for the production of medium-chainlength Polyhydroxyalkanoates by different Pseudomonas strains.
Material and methods: The production of Polyhydroxyalkanoate was evaluated in a nitrogen-limited minimal medium supplemented with crude Camelina oil or saponified oil to compare the production capability of Pseudomonas sp. strains. A phosphates-limited medium was used to optimize polyhydroxyalkanoate production in fed-batch assays. Experiments were carried out by duplicates.
Results and conclusion: Pseudomonas resinovorans was used for direct fermentation of Camelina oil without prior hydrolysis. A first approach to process development in bioreactor has provided up to 40% (w w-1) polymer content, matching highest medium-chain-length polyhydroxyalkanoates titer reported from plant oils (13.2 g l-1). Camelina oil was shown to be a suitable substrate for production of medium-chain-length polyhydroxyalkanoates. This non-food vegetable oil gave good results for Pseudomonas resinovorans DSM 21078 without any pre-treatment.
Conflict of interest: The authors declare no conflict of interest.
- ▪ Bioplastics ▪ Camelina oil ▪ Medium-chain-length polyhydroxyalkanoates ▪ PHA ▪ Pseudomonas sp.
How to Cite
References
Braunegg G, Bona R, Koller M. Sustainable polymer production. Polym Plast Technol Eng. 2004; 43(6): 1779-1793. doi:10.1081/PPT-200040130
Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. Nat Biotechnol. 2016; 37: 24-28. doi:10.1016/j.nbt.2016.05.001
Prieto MA. From oil to bioplastics, a dream come true? J Bacteriol. 2007; 189(2): 289-290. doi:10.1128/JB.01576-06
Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev. 2009; 38(8): 2434-2446. doi: 10.1039/B812677C
Brigham CJ, Sinskey AJ. Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind. 2012; 1(1): 52-60
Koller M. Poly (hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Appl Food Biotechnol. 2014; 1(1): 3-15. doi:10.22037/afb.v1i1.7127
Chanprateep S. Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng. 2010; 110(6): 621-632. doi:10.1016/j.jbiosc.2010.07.014
Walsh M, O’Connor K, Babu R, Woods T, Kenny S. Plant oils and products of their hydrolysis as substrates for polyhydroxyalkanoate synthesis. Chem Biochem Eng Q. 2015; 29(2): 123-133. doi:10.15255/CABEQ.2014.2252
Cruz MV, Freitas F, Paiva A, Mano F, Dionísio M, Ramos AM, Reis AM. Valorization of fatty acids-containing wastes and byproducts into short-and medium-chain length polyhydroxyalkanoates. New biotechnol. 2016; 33(1): 206-215. doi:10.1016/j.nbt.2015.05.005
Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR. Non-edible plant oils as new sources for biodiesel production. Int J of Mol Sci. 2008; 9(2): 169-180. doi:10.3390/ijms9020169
Carlsson AS. Plant oils as feedstock alternatives to petroleum–A short survey of potential oil crop platforms. Biochimie 2009; 91(6): 665-670. doi:10.1016/j.biochi.2009.03.021
Atabani A, Silitonga A, Ong H, Mahlia T, Masjuki H, Badruddin IA, Fayaz H. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew sust energ rev. 2013; 18: 211-245. doi:10.1016/j.rser.2012.10.013
Berti M, Gesch R, Eynck C, Anderson J, Cermak S. Camelina uses, genetics, genomics, production, and management. Ind crops and prod. 2016; 94: 690-710. doi:10.1016/j.indcrop.2016.09.034
Zanetti F, Eynck C, Christou M, Krzyżaniak M, Righini D, Alexopoulou E, Stolarski MJ, Van Loo EN, Puttick D, Monti A. Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Ind Crops and Prod. 2017; 107: 602-608. doi:10.1016/j.indcrop.2017.06.022
Sainger M, Jaiwal A, Sainger PA, Chaudhary D, Jaiwal R, Jaiwal PK. Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products. Renew Sust Energ Rev. 2017; 68:623-637. doi:10.1016/j.rser.2016.10.023
Malik MR, Yang W, Patterson N, Tang J, Wellinghoff RL, Preuss ML, Burkitt C, Sharma N, Ji Y, Jez JM, Peoples OP, Jaworski. JG, Cahoon EB, Snell KD. Production of high levels of poly‐3‐hydroxybutyrate in plastids of Camelina sativa seeds. Plant biotechnol J. 2015; 13(5): 675-688. doi:10.1111/pbi.12290
Solaiman D, Ashby R, Foglia T. Production of polyhydroxyalkanoates from intact triacylglycerols by genetically engineered Pseudomonas. Appl Microbiol Biotechnol. 2001; 56(5-6): 664-669. doi:10.1007/s002530100692
Solaiman DK, Ashby RD, Foglia TA. Physiological characterization and genetic engineering of Pseudomonas corrugata for medium-chain-length polyhydroxyalkanoates synthesis from triacylglycerols. Curr Microbiol. 2002; 44(3): 189-195. doi:10.1007/s00284-001-0086-5
Moldes C, Garcia P, Garcia JL, Prieto MA. In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol. 2004; 70(6): 3205-3212. doi:10.1128/AEM.70.6.3205-3212.2004
Lee SY, Wong HH, Choi J, Lee SH, Lee SC, Han CS. Production of medium‐chain‐length polyhydroxyalkanoates by high‐cell‐density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol Bioeng 2000; 68(4): 466-470. doi:10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T
Ahn WS, Park SJ, Lee SY. Production of Poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol. 2000; 66(8): 3624-3627. doi:10.1128/AEM.66.8.3624-3627.2000
Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B. Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Appl Environ Microbiol. 1988; 54(12): 2924-2932.
Tan I, Kumar KS, Theanmalar M, Gan S, Gordon Iii B. Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl Microbiol Biotechnol. 1997; 47(3): 207-211. doi:10.1007/s002530050
Moser BR. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Tech. 2010; 22(12): 270-273. doi:10.1002/lite.201000068
Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH. Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol. 1992; 58(2): 744-746.
Ashby R, Foglia T. Poly (hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol. 1998; 49(4): 431-437. doi:10.1007/s002530051194
De Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA. The turnover of medium‐chain‐length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 2010; 12(1):207-221. doi:10.1111/j.1462-2920.2009.02061.x
Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. J Environ Manage. 2018; 205: 215-230. doi:10.1016/j.jenvman.2017.09.083
Marsudi S, Unno H, Hori K. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2008; 78(6): 955-961. doi:10.1007/s00253-008-1388-3
Impallomeni G, Ballistreri A, Carnemolla GM, Guglielmino SP, Nicolò MS, Cambria MG. Synthesis and characterization of poly (3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. Int J Biol Macromol. 2011; 48(1): 137-145. doi:10.1016/j.ijbiomac.2010.10.013
Yun H, Kim D, Chung C, Kim H, Yang Y, Rhee Y. Characterization of a Tachy Poly (3-hydroxyalkanoate) Produced by Pseudomonas chlororaphis HS21 from Palm Kernel Oi. J Microbiol Biotechnol. 2003; 13(1): 64-69.
Solaiman DK, Ashby RD, Foglia TA. Medium-chain-length poly (β-hydroxyalkanoate) synthesis from triacylglycerols by Pseudomonas saccharophila. Curr Microbiol. 1999; 38(3): 151-154. doi:10.1007/PL00006779
Song JH, Jeon CO, Choi MH, Yoon SC, Park W. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol. 2008; 18(18): 1408-1415.
- Abstract Viewed: 1624 times
- PDF Downloaded: 1329 times