Nanoemulsions: Preparation, Structure, Functional Properties and their Antimicrobial Effects
Applied Food Biotechnology,
Vol. 3 No. 3 (2016),
28 June 2016
,
Page 138-149
https://doi.org/10.22037/afb.v3i3.11773
Abstract
Background and Objectives: Recently, due to the interest of healthy lifestyle demand for research on novel methods of increasing the shelf-life of food products without the necessity of using preservatives has extended rapidly in the world. Ability of nanoemulsions to improve global food quality has attracted great attention in food preservation. This is as a result of a number of
attributes peculiar to nanoemulsions such as optical clarity, ease of
preparation, thermodynamic stability and increased surface area. This review discusses the potential food applications of nanoemulsions as vehicles for the delivery of antimicrobial compounds. Moreover, the preparation, structure, and functional properties of nanoemulsions and their antimicrobial effects on foodborne pathogens and biofilms will be reviewed in detail. Antimicrobial nanoemulsions are formulated from the antimicrobial compounds that are approved by the Food and Drug Administration (FDA) for use in foods.
Results and Conclusion: The antimicrobial activity of nanoemulsions is nonspecific, unlike that of antibiotics, thus they have a broad-spectrum of antimicrobial activity against bacteria (e.g., Escherichia coli, Salmonella, and Staphylococcus aureus), enveloped viruses (e.g., HIV, and herpes simplex), fungi (e.g., Candida, Dermatophytes), and spores (e.g., anthrax) at concentrations that are nontoxic in animals (while limiting the capacity for the generation of resistance) and kill pathogens by interacting with their membranes. This physical kill-on-contact mechanism significantly reduces the possibility of the emergence of resistant strains. In general, more research is needed to improve the application processes of antimicrobial nanoemulsion, especially sensory aspects, to be appropriate for each product.
Conflict of interests: The authors declare no conflict of interest.
- Antimicrobial
- Functional properties
- Food borne pathogens
- Nanoemulsion
How to Cite
References
Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: Formation, structure and physical properties. J Phys Condens Matter 2006; 18: 635–666. doi: 10.1088/0953-8984/18/41/R01.
Weiss J, Takhistov P, McClements J. Functional materials in food nanotechnology. J. Food Sci 2006; 71(9): 107–116. doi:10.1111/j.1750-3841.2006.00195.x.
Weiss J, McClements DJ. Influence of Ostwald ripening on rheology of oil-in-water emulsions containing electrostatically stabilized droplets. Languir 2000; 16(5): 2145–2150. doi: 10.1021/la9909392.
Gupta A, Burak Eral H, Alan Hatton T, Doyle PS. Nanoemulsions: Formation, properties and applications. Soft Matter 2016; 12, 2826-2841. doi:10.1039/C5SM02958A.
Shah P, Bhalodia D, Shelat P. Nanoemulsion: A Pharmaceutical Review. Sys Rev Pharm 2010; 1(1): 24-32. doi: 10.4103/0975-8453.59509.
Leal-Calderon F, Thivilliers F, Schmitt V. Structured emulsions. Curr Opin Colloid Interface Sci 2007; 12(4–5): 206–212. doi: 10.1016/j.cocis.2007.07.003.
Hadian Z, Sahari MA, Moghimi HR, Barzegar M, Abbasi S, Ghaffari A. Preparation, characterization and optimization of liposomes containing eicosapentaenoic and docosahexaenoic acids: A methodology approach. Res Pharm Sci 2012; 7(5): S263. http://www.rps.mui.ac.ir/index.php/jrps/article/download/812/1425.
Ariyaprakai S, Dungan SR. Influence of surfactant structure on the contribution of micelles to Ostwaldripening in oil-in-water emulsions. J Colloid Interface Sci 2010; 343: 102–108. doi:10.1016/j.jcis.2009.11.034.
Sahari MA, Asgari S. Effects of plants bioactive compounds on foods microbial spoilage and lipid oxidation. Food Sci Technol 2013; 1(3): 52-61. doi:10.13189/fst.2013.010303.
Al-Ahmad A, Wunder A, Auschill TM, Follo M, Braun G, Hellwig E. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella pp. in dental plaque biofilm as analyzed by fivecolor multiplex fluorescence in situ hybridization. J Med Microbiol 2007; 56: 681–687. doi:10.1099/jmm.0.47094-0.
CDC (Center for Disease Control and Prevention). Botulism associated with commercial carrot juice–Georgia and Florida, Morb Mortal Wkly Rep (MMWR) 2006; 55(37): 1098–1099. http://www.ncbi.nlm.nih.gov/pubmed/17035929.
Anonymous. Preliminary food net data on the incidence of infection with pathogens transmitted commonly through food–10 states, United States, Morb Mortal Wkly Rep (MMWR) 2005; 55(14): 392-395. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5914a2.htm.
CDC (Center for Disease Control and Prevention). Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach - United States, Morb Mortal Wkly Rep (MMWR) 2006; 55(38): 1045–1046. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm55d926a1.htm.
Donsi F, Annunziata M, Vincensi M, Ferrari G. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. J Biotechnol 2012; 159: 342- 350. doi:10.1016/j.jbiotec.2011.07.001.
Doona CJ, Feeherry FE, Feng H, Grove S, Krishnamurthy K, Lee A, Kustin K. Combining sanitizers and nonthermal processing technologies to improve fresh-cut produce safety. E-Beam Pasteuriztion Complementary Food Process Technol 2015; 95-125. doi: 10.1533/9781782421085.2.95.
Hadian Z, Sahari MA, Moghimi HR, Barzegar M. Formulation, characterization and optimization of lipo-somes containing eicosapentaenoic and docosahexaenoic acids: A methodology approach. Iran J Pharm Res 2014; 13(2): 393-404. http://www.ncbi.nlm.nih.gov/pubmed/25237335.
Lucera A, Costa C, Conte A, Del Nobile MA. Food applications of natural antimicrobial compounds. Front Microbiol 2012; 3: 287. doi:10.3389/fmicb.2012.00287.
Ferreira JP, Alves D, Neves O, Silva J, Gibbs PA, Teixeira PC. Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food Control 2010; 21: 227-230. doi:10.1016/j.foodcont.2009.05.018.
Sahari MA, Berenji Ardestani S. Bio-antioxidants activity: their mechanisms and measurement methods. Appl Food Biotechnol 2014; 1(2): 3-8. http://journals.sbmu.ac.ir/afb/article/view/7747.
Gaysinsky S, Davidson PM, Bruce BD, Weiss J. Growth inhibition of Escherichia coli O157: H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. J Food Prot 2005; 68(12): 2559-2566. http://www.ncbi.nlm.nih.gov/pubmed/16355826.
Guan Y, Wub J, Zhong Q. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with ß-carotene. Food Chem 2016; 194: 787–796. doi:10.1016/j.foodchem.2015.08.097.
Jayasena DD, Jo C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci Technol 2013; 34: 96-108. doi:10.1016/j.tifs. 2013.09.002.
Buranasuksombat U, Kwon YJ, Turner M, Bhandari B. Influence of Emulsion Droplet Size on Antimicrobial Properties. J Food Sci Biotechnol 2011; 20(3): 793-800. doi: 10.1007/s10068-011-0110-x.
Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll 2013; 30: 401-407. doi:10.1016/j.foodhyd. 2012.07.004.
Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol 2011; 2: 626-639. doi: 10.4236/jbnb.2011.225075.
McClements D J, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 2011; 51(4): 285-330. doi:10.1080/10408398.2011.559558.
Kelmann NG, Kuminek G, Teixeira H, Koester LS. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int J Pharm 2007; 342: 231–9. doi:10.1016/j.ijpharm.2007.05.004.
Lombardi Borgia S, Regehly M, Sivaramakrishnan R, Mehnert W, Korting HC, Danker K, Röder B, Kramer KD, Schäfer-Korting M. Lipid nanoparticles for skin penetration enhancement–correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J Control Release 2005; 110(1): 151–163. doi: 10.1016/j.jconrel.2005.09.045.
Sagalowicz L, Leser ME. Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 2010; 15: 61-72. DOI:10.1016/j.cocis.2009.12.003.
Zeeb B, Gibis M, Fischer L, Weiss J. Influence of interfacial properties on Ostwald ripening in crosslinked multilayered oil-in-water emulsions. J Colloid Interface Sci 2012; 387: 65–73. doi:10.1016/j.jcis.2012.07.054.
Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JRJr. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 2001; 156: 1–7. doi:10.1078/0944- 5013-00069.
Sanguasri S, Augustin MA. Nanoscale materials development-a food industry perspective. Trends Food SciTechnol 2006; 17: 547–56. doi:10.1016/j.tifs.2006.04.010.
Ma Q, Zhang Y, Critzer F, Davidson PM, Zivanovic S, Zhong Q. Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocoll. 2016; 52: 533-542. doi:10.1016/j.foodhyd.2015.07.036.
Dias MLN, Carvalho JP, Rodrigues DG, Graziani SR, Maranhao RC. Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers. Cancer Chemother. Pharmacol. 2007; 59(1): 105–111. doi: 10.1007/s00280-006-0252-3.
Wang XY, Jiang Y, Wang YW, Huang MT, Ho CT, Huang QR. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008; 108(2): 419–424. doi:10.1016/j.foodchem.2007.10.086.
Joe MM, Bradeeba K, Parthasarathi R, Sivakumaar PK, Chauhan PS, Tipayno S, Benson A, Sa T. Development of surfactin based nanoemulsion formulation from elected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. J Taiwan Inst Chem E 2012; 43: 172-180. doi: 10.1016/j.jtice.2011.08.008.
Karthikeyan R, Amaechi BT, Rawls HR, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 2011; 56: 437–445. doi:10.1016/j.archoralbio.2010.10.022.
Smullen J, Koutsou GA, Foster HA, Zumbe A, Storey DM. The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res 2007; 41: 342–349. doi: 10.1159/000104791.
Sukanya G, Mantry S, Anjum S. Review on nanoemulsions. IJIPSR 2013; 1(2): 192-205.
Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, Bonsignore L, Fadda AM. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J Pharm Biopharm 2005; 59: 161–168. DOI:10.1016/j.ejpb.2004.06.005.
Trombley PD. Antimicrobial nanoemulsions. The Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS) 2010; 25(5): 654-663. http://nano.med.umich.edu/platforms/Antimicrobial Nanoemulsion.html.
Sonneville-Aubrun O, Simonnet JT, Lalloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 2004; 108–109: 145–149.doi:10.1016/j.cis.2003.10.026.
Baker JrJR, Hamouda T, Shih A, Myc A. Non-toxic Antimicrobial Compositions and Methods of Use 2000; Patent Number US6559189.
Myc, A, Vanhecke T, Landers JL, Hamouda T, Baker JrJR. The fungicidal activity of novel nanoemulsion (X8W60PC) against clinically important yeast and filamentous fungi. Mycopathologia 2001; 155: 195–201. http://www.ncbi.nlm.nih.gov/pubmed/12650595.
Pannu J, McCarthy A, Martin A, Hamouda T, Ciotti S, Fothergill A, Sutcliffe J. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes other filamentous fungi, and candida albicans. Antimicrob Agents Chemother 2009; 53(8): 3273- 3279. doi:10.1128/AAC.00218-09.
Myc A, Anderson MJ, Wright DC, Brisker J, Baker JrJR. Inhibitory effect of non-phospholipid liposomes and nanoemulsions on influenza A virus infectivity. Paper presented at 38rd interscience conference on antimicrobial agents and chemotherapy 1998; 336. http://eurekamag.com/research/031/955/031955145.php#close.
Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira J. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol 2007;
: 15–19.doi:10.1016/j.ijfoodmicro.2007.05.008.
Ramalingam K, Amaechi BT, Ralph RH, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Arch Oral Biol. 2012; 57(1): 15–22. doi:10.1016/j.archoralbio.2011.07.001.
Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Physicochemical characterization and antimicrobial activity of foodgrade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll 2015; 43: 547-556. doi: 10.1016/j.foodhyd.2014.07.012.
Bhargava K, Conti DS, Rocha SRP, Zhang Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol 2015; 47: 69-73. doi: 10.1016/j.fm.2014.11.007.
Hayes AJ, Markovic, B. Toxicity of Australian essential oil Backhousia citriodora (lemon myrtle). Part 1. Antimicrobial activity and in vitro cytotoxicity. Food Chem Toxicol 2002; 40: 535-543. doi:10.1016/S0278-6915(01)00103-X.
Choi SI, Chang KM, Lee YS, Kim GH. Antibacterial activity of essential oils from Zanthoxylum piperitum A.P. DC. and Zanthoxylum schinifolium. Food Sci Biotechnol. 2008; 17: 195-198. http://agris.fao.org/agrissearch/search.do?recordID=KR2008003807.
Lee VA, Karthikeyan R, Rawls HR, Amaechi BT. Anti-cariogenic effect of a cetylpyridinum chloride containing nanoemulsion. J Dent 2010; 38 (9): 742–749. doi:10.1016/j.jdent.2010.06.001.
Hazan R, Levine A, Abeliovich H. Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl Environ Microbiol. 2004; 70(8): 4449–4457.doi: 10.1128/AEM.70.8.4449–4457.2004.
Friedman M, Henika PR, Mandrell RE. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2003; 66(10): 1811-1821.http://www.ncbi.nlm.nih.gov/pubmed/14572218.
Davidson PM, Sofos JN, Branen AL. 2005. Antimicrobials in Food (3 ed). Boca Raton, FL: CRC Press.
Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control 2014; 46: 412-429. doi:10.1016/j.foodcont.2014.05.047.
Juneja VK, Dwivedi HP, Yan X. Novel natural food antimicrobials. Annu Rev Food Sci Technol 2012; 3: 381-403. doi: 10.1146/annurev-food-022811-101241.
Perez KL, Taylor TM, Taormina PJ. Competitive research and development on antimicrobials and food preservatives. Microbiolo Res Dev Food Ind 2012; 109-160. doi:10.1201/b12678-6.
Hondrodimou O, Kourkoutas Y, Panagou E. Efficacy of natamycin to control fungal growth in natural black olive fermentation. Food Microbiol 2011; 28(3): 621-627. doi:10.1016/j.fm.2010.11.015.
Sznitowska M, Janicki S, Dabrowska EA, Gajewska M. Physicochemical screening of antimicrobial agents as potential preservatives for submicron emulsions. Eur J Pharm Sci. 2002; 15: 489–495. doi:10.1016/S0928-0987(02)00034-9.
Brul S, Coote P. 1999. Preservative agents in foods: Mode of action and microbial resistance mechanisms. Int J Food Microbiol 1999; 50 (1–2): 1–17. doi:10.1016/S0168-1605(99)00072-0.
Lambert RJ, Stratford M. Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 1999; 86(1): 157–164. doi: 10.1046/j.1365-2672.1999.00646.x.
Donsi F, Annunziata M, Sessa M, Ferrari G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT- Food Sci Technol 2011; 44: 1908- 1914. doi:10.1016/j.lwt.2011.03.003.
Bouchemal K, Briançon S, Perrier E, Fessi H. Nanoemulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimiz-ation. Int J Pharm 2004; 280: 241–251. doi:10.1016/j.ijpharm.2004.05.016.
- Abstract Viewed: 1630 times
- PDF Downloaded: 1110 times