The Role of some miRNA Contribution in Alzheimer’s Disease: Possible Role of miRNA_132, miRNA_124, miRNA_125 in Learning and Memory
Archives of Advances in Biosciences,
Vol. 14 No. 1 (2023),
19 February 2023
https://doi.org/10.22037/aab.v14i1.43533
Abstract
Context: Alzheimer’s disease (AD) is an advanced and devastating neurodegenerative illness. It is an important reason for dementia in the world’s quickly aging population. The spread of AD cases positions serious problems on relations, society, and the family. MicroRNAs are endogenous ∼22 nucleotides non-coding RNAs that could control gene expression nearby a length of RNA or DNA that has been transcribed respectively from a DNA or RNA template or translation suppression. AD is a multifactorial disorder and a progressive disease beginning with mild memory loss that micoRNAs show a serious character in the pathogenesis of AD. In this review, we will focus on the outcome of microRNAs in diverse pathological manners during AD development.
Evidence Acquisition: miRNAs are small noncoding endogenous RNA sequences active in the regulation of protein expression; change of miRNA expression can cause abnormal adjustment in key genes and pathways that contribute to disease development. The role of exosomal miRNAs has been proven in various neurodegenerative diseases, and this opens the possibility that dysregulated exosomal miRNA profiles may influence AD disease. However, most abnormally expressed miRNAs recognized in AD are not triggered by synaptic activity. Some findings showed that synaptic-related miRNA mediates synaptic/memory deficits in AD via the protein signaling pathway, illuminating a potential therapeutic strategy for AD. Data were obtained by inhibiting miRNA and blocking the phosphorylation on mediated protein.
Results: The pieces of evidence show that microRNAs play a critical role in the pathogenesis of AD, but they do not have the same role in the disease. For example, miRNA-134 and miRNA-146 show downregulation in the brain of AD mice while miRNA-138 can regulate the evolution of synapse and size of the spine.
Conclusion: The data on miRNAs in in vitro and in vivo AD animal models must be established by educations in the human brain. This feature is critical for forming the real the role of micRNA in AD miRNAs in AD.
- Alzheimer
- Learning
- Memory
- MicroRNAs
How to Cite
References
. Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer's disease. Wiley Interdiscip Rev RNA. 2018 ;9(2):10.1002/wrna.1463. [DOI:10.1002/wrna.1463] [PMID] [PMCID]
. Almansoub HA, Tang H, Wu Y, Wang D-Q, Mahaman YAR, Wei N, et al. Tau abnormalities and the potential therapy in Alzheimer’s disease. J Alzheimers Dis. 2019;67(1):13-33. [DOI:10.3233/JAD-180868] [PMID]
. Xiao H, Choi SR, Zhao R, Ploessl K, Alexoff D, Zhu L, et al. A new highly deuterated [18F] AV-45,[18F] D15FSP, for imaging β-Amyloid plaques in the brain. ACS Med Chem Lett. 2021; 12(7): 1086–92. [DOI:10.1021%2Facsmedchemlett.1c00062] [PMID] [PMCID]
. Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ. A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol. 2019; 218(2): 644–63. [DOI:10.1083%2Fjcb.201806205] [PMID] [PMCID]
. Maoz R, Garfinkel BP, Soreq H. Alzheimer’s disease and ncRNAs. Adv Exp Med Biol. 2017:978:337-361. [DOI:10.1007/978-3-319-53889-1_18] [PMID]
. Mohr AM, Mott JL, editors. Overview of microRNA biology. Semin Liver Dis. 2015;35(1):3-11. [DOI:10.1055/s-0034-1397344] [PMID] [PMCID]
. Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci. 2013 :7:178. [DOI:10.3389/fncel.2013.00178] [PMID] [PMCID]
. Putteeraj M, Fairuz YM, Teoh SL. MicroRNA dysregulation in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2017;16(9):1000-09. [DOI:10.2174/1871527316666170807142311] [PMID]
. Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol . 2012;3(4):365-73. [PMID] [PMCID]
. Jaber V, Zhao Y, Lukiw W. Alterations in micro RNA-messenger RNA (miRNA-mRNA) coupled signaling networks in sporadic Alzheimer’s disease (AD) hippocampal CA1. J Alzheimers Dis Parkinsonism. 2017;7(2):312. [DOI:10.4172/2161-0460.1000312] [PMID] [PMCID]
. Jin Y, Tu Q, Liu M. MicroRNA‑125b regulates Alzheimer's disease through SphK1 regulation. Mol Med Rep. 2018 ;18(2):2373-80. [DOI:10.3892/mmr.2018.9156] [PMID]
. Zhao Y, Zhao R, Wu J, Wang Q, Pang K, Shi Q, Gao Q, Hu Y, Dong X, Zhang J, Sun J. Melatonin protects against Aβ-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. Biofactors. 2018 ;44(6):609-18. [DOI:10.1002/biof.1411] [PMID]
. Delay C, Dorval V, Fok A, Grenier-Boley B, Lambert JC, Hsiung GY, Hébert SS. MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms. Front Mol Neurosci. 2014;7:67. [DOI:10.3389/fnmol.2014.00067] [PMID] [PMCID]
. Hafez HA, Kamel MA, Osman MY, Osman HM, Elblehi SS, Mahmoud SA. Ameliorative effects of astaxanthin on brain tissues of alzheimer's disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways. Mol Cell Biochem. 2021 ;476(5):2233-49. [DOI:10.1007/s11010-021-04079-4] [PMID]
. Zhao Y, Pogue AI, Lukiw WJ. MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer's Disease (AD)-Novel and Unique Pathological Features. Int J Mol Sci. 2015 Dec 17;16(12):30105-16. [DOI:10.3390/ijms161226223] [PMID] [PMCID]
. Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci. 2007 ;8(9):663-72. [DOI:10.1038/nrn2194] [PMID]
. Kim YA, Siddiqui T, Blaze J, Cosacak MI, Winters T, Kumar A, Tein E, Sproul AA, Teich AF, Bartolini F, Akbarian S, Kizil C, Hargus G, Santa-Maria I. RNA methyltransferase NSun2 deficiency promotes neurodegeneration through epitranscriptomic regulation of tau phosphorylation. Acta Neuropathol. 2023;145(1):29-48. [DOI:10.1007/s00401-022-02511-7] [PMID] [PMCID]
. Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, Dorval V, Parsi S, Morin F, Planel E, Bennett DA, Fernandez-Gomez FJ, Sergeant N, Buée L, Tremblay MÈ, Calon F, Hébert SS. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet. 2015 ;24(23):6721-35. [DOI:10.1093/hmg/ddv377] [PMID] [PMCID]
. El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, Balu DT, Rabinovsky R, Cantlon A, Elkhal A, Selkoe DJ, Sonntag KC, Walsh DM, Krichevsky AM. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol. 2018 ;136(4):537-555. [DOI:10.1007/s00401-018-1880-5] [PMID] [PMCID]
. Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F, Qiao M, Nie Y, He Y, Cheng J, Dai Y, Li Y. MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells. Oncotarget. 2017;8(15):24314-326. [DOI:10.18632/oncotarget.15149] [PMID] [PMCID]
. Ramakrishna S, Muddashetty RS. Emerging Role of microRNAs in Dementia. J Mol Biol. 2019;431(9):1743-62. [DOI:10.1016/j.jmb.2019.01.046] [PMID]
. Wei CW, Luo T, Zou SS, Wu AS. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Life Sci. 2017;188:118-122. [DOI:10.1016/j.lfs.2017.08.033] [PMID]
. Aten S, Hansen KF, Price KH, Wheaton K, Kalidindi A, Garcia A, Alzate-Correa D, Hoyt KR, Obrietan K. miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition. Learn Mem. 2018 ;25(5):214-229. [DOI:10.1101/lm.047191.117] [PMID] [PMCID]
. Bredy TW, Lin Q, Wei W, Baker-Andresen D, Mattick JS. MicroRNA regulation of neural plasticity and memory. Neurobiol Learn Mem. 2011 ;96(1):89-94. [DOI:10.1016/j.nlm.2011.04.004] [PMID]
. Zendjabil M. Circulating microRNAs as novel biomarkers of Alzheimer's disease. Clin Chim Acta. 2018 ;484:99-104. [DOI:10.1016/j.cca.2018.05.039] [PMID]
. Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14(11):639-652. [DOI:10.1038/s41582-018-0079-7] [PMID] [PMCID]
. Zhang Z, Yang T, Xiao J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine. 2018;34:267-274. [DOI:10.1016/j.ebiom.2018.07.036] [PMID] [PMCID]
. Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. Prog Mol Biol Transl Sci. 2017;146:47-94. [DOI:10.1016/bs.pmbts.2016.12.013] [PMID]
. Kumar S, Reddy PH. MicroRNA-455-3p as a Potential Biomarker for Alzheimer's Disease: An Update. Front Aging Neurosci. 2018 Feb 23;10:41. [DOI:10.3389/fnagi.2018.00041] [PMID] [PMCID]
. Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease. J Alzheimers Dis. 2014;39(2):253-9. [DOI:10.3233/JAD-130932] [PMID]
. DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, Chen G, Shen T, Tran H, Nichols B, Zanardi TA, Kordasiewicz HB, Swayze EE, Bennett CF, Diamond MI, Miller TM. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481. [DOI:10.1126/scitranslmed.aag0481] [PMID] [PMCID]
. Higaki S, Muramatsu M, Matsuda A, Matsumoto K, Satoh JI, Michikawa M, Niida S. Defensive effect of microRNA-200b/c against amyloid-beta
peptide-induced toxicity in Alzheimer's disease models. PLoS One. 2018;13(5):e0196929. [DOI:10.1371/journal.pone.0196929] [PMID] [PMCID]
. An F, Gong G, Wang Y, Bian M, Yu L, Wei C. MiR-124 acts as a target for Alzheimer's disease by regulating BACE1. Oncotarget. 2017;8(69):
-114071. doi: 10.18632/oncotarget.23119. Erratum in: Oncotarget. 2018;9(37):24871. [DOI:10.18632/oncotarget.23119] [PMID] [PMCID]
. Santa-Maria I, Alaniz ME, Renwick N, Cela C, Fulga TA, Van Vactor D, Tuschl T, Clark LN, Shelanski ML, McCabe BD, Crary JF. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest. 2015;125(2):681-6. [DOI:10.1172/JCI78421] [PMID] [PMCID]
. Ghasemi-Kasman M, Shojaei A, Gol M, Moghadamnia AA, Baharvand H, Javan M. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer's disease. Mol Cell Neurosci. 2018;86:50-57. [DOI:10.1016/j.mcn.2017.11.012] [PMID]
. Ma X, Liu L, Meng J. MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer's disease. Neurosci Lett. 2017 ;661:57-62. [DOI:10.1016/j.neulet.2017.09.043]
. Wang G, Huang Y, Wang LL, Zhang YF, Xu J, Zhou Y, Lourenco GF, Zhang B, Wang Y, Ren RJ, Halliday GM, Chen SD. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer's disease. Sci Rep. 2016 ;6:26697. [DOI:10.1038/srep26697] [PMCID]
. Croce N, Gelfo F, Ciotti MT, Federici G, Caltagirone C, Bernardini S, Angelucci F. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection?
Mol Cell Biochem. 2013;376(1-2):189-95. [DOI:10.1007/s11010-013-1567-0] [PMID]
. Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D, Ryu H, Lee SK, Kim M, Roh JK. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012 ;72(2):269-77. [DOI:10.1002/ana.23588]
. Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT. Involvement of inflammation in Alzheimer's disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res. 2015 ;38(12):2106-19. [DOI:10.1007/s12272-015-0648-x]
. Kou X, Chen N. Resveratrol as a Natural Autophagy Regulator for Prevention and Treatment of Alzheimer's Disease. Nutrients. 2017 ;9(9):927. [DOI:10.3390/nu9090927] [PMCID]
. Li SH, Gao P, Wang LT, Yan YH, Xia Y, Song J, Li HY, Yang JX. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice. Front Neurosci. 2017;11:340. [DOI:10.3389/fnins.2017.00340] [PMCID]
. Chen JJ, Zhao B, Zhao J, Li S. Potential Roles of Exosomal MicroRNAs as Diagnostic Biomarkers and Therapeutic Application in Alzheimer's Disease. Neural Plast. 2017;2017:7027380. [DOI:10.1155/2017/7027380] [PMCID]
. Junn E, Mouradian MM. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther. 2012 ;133(2):142-50. [DOI:10.1016/j.pharmthera.2011.10.002] [PMCID]
. Hosseininia M, Rostami F, Delphi L, Ghasemzadeh Z, Kouhkan F, Rezayof A. Memory impairment was ameliorated by corticolimbic microinjections of arachidonylcyclopropylamide (ACPA) and miRNA-regulated lentiviral
particles in a streptozotocin-induced Alzheimer's rat model. Exp Neurol. 2023;370:114560. [DOI:10.1016/j.expneurol.2023.114560] [PMID]
. Ye F, Tian S, Hu H, Yu Z. Electroacupuncture reduces scopolamine-induced amnesia via mediating the miR-210/SIN3A and miR-183/SIN3A signaling pathway. Mol Med. 2020;26(1):107. [DOI:10.1186/s10020-020-00233-8] [PMCID]
. Moustafa NA, El-Sayed MA, Abdallah SH, Hazem NM, Aidaros MA, Abdelmoety DA. Effect of Letrozole on hippocampal Let-7 microRNAs and their correlation with working memory and phosphorylated Tau protein in an Alzheimer's disease-like rat model. Egypt J Neurol Psychiatry Neurosurg. 2022;58(1):1-12. [DOI:10.1186/s41983-022-00504-7]
- Abstract Viewed: 109 times
- PDF Downloaded: 88 times