Investigation of Sonchus maritimus Loaded Niosomes Relieves Hematological Alterations and Cardiac Oxidative Stress Caused by High-Fructose Diet in Rats Sonchus maritimus Loaded Niosomes alleviate HFD induced Cardiac Disorder
Iranian Journal of Pharmaceutical Sciences,
Vol. 20 No. 3 (2024),
22 September 2024
,
Page 271- 282
https://doi.org/10.22037/ijps.v20i3.45724
Abstract
This study aimed to evaluate the therapeutic effect of niosomes loaded with Sonchus maritimus extract conjugated with linoleic acid on hematological changes and cardiac dysfunction in albino Wistar rats caused by a high fructose diet. Four boxes of six male Albino Wistar rats were randomly divided into four groups. The control group was fed a standard diet, the HFD+SmE-N group received Sonchus maritimus extract-loaded niosomes, and the HFD+Met group received metformin. Growth parameters, hematological profile, oxidative stress markers, and histological analysis were examined for each group. The obtained results demonstrated that HFD significantly decreased (P<0.001) final body weight, water intake, and food intake while significantly increasing (P<0.001) the relative heart weight of rats compared to control rats. According to the hematological parameters, the eurytrogram and leukogram profiles of the HFD group significantly decreased (P<0.01), whereas the blood platelet level significantly increased (P<0.001), compared to the control. Furthermore, in a significant increase (P<0.001) of heart malondialdehyde (MDA) levels while a significant decrease (P<0.01) of reduced glutathione (GSH) and total thiol (-SH) levels, in addition to a significant inhibition (P<0.05) of glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities heart homogenate of HFD group. The histological examination revealed alterations of heart tissue section of HFD group. However, the treatments of Sonchus maritimus extract –loaded niosomes and metformin showed an important improvement of the mentioned markers when we compared to HFD group. Globally, the therapeutic effect of SmE-N was better than metformin treatment. Niosomes loaded Sonchus maritimus aqueous extract provided therapeutic potential for treating cardiac dysfunction and hematological changes induced by consumption of high-fructose diet through improving the antioxidant defense system, hematological profile, and even the histological profile of affected heart.
- Cardiac dysfunction
- Hematological changes
- oxidative stress
- Sonchus maritimus
- Niosomes
How to Cite
References
Gorbachinsky I, Akpinar H, Assimos DG. Metabolic syndrome and urological diseases. Rev Urol. (2022) 12(4): 157-180.
Shen WC, Sun ZJ, Chou CY, et al. Association of simple renal cysts with metabolic syndrome in adults. Front Public Heal. (2022) 10: 1-8.
Bugga P, Mohammed SA, Alam MJ, Katare P, Meghwani H, Maulik SK, Arava S, Banerjee SK. Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress. Life Sci. (2022) 307: 120862.
Chetehouna S, Derouiche S, Reggami Y, Boulaares I. Sonchus maritimus extracts-loaded niosomes bioconjugated by linoleic acid enhance high fructose diet-induced hepatic encephalopathy in albino Wistar rats. Arch Razi Inst. (2024) 79(1): 194-205.
Jayasinghe IU, Agampodi TC, Dissanayake AK, Srimantha SM, Agampodi SB. Comparison of global definitions of metabolic syndrome in early pregnancy among the Rajarata Pregnancy Cohort participants in Sri Lanka. Sci Rep. (2022) 12(1): 1-11.
Suzuki Y, Kondo K, Toyoda K, Tanaka Y, Kobayashi A, Yokoyama D, Sakakibara H. Novel Biomarker Establishment for Evaluation of Excessive Fructose Consumption Using a Rat Model. In Vivo. (2023) 37(1): 173-181.
Khatun Kali MS, Islam Khan MR, Barman RK, Hossain MF, Ibne Wahed MI. Cilnidipine and magnesium sulfate supplement ameliorates hyperglycemia, dyslipidemia and inhibits oxidative-stress in fructose-induced diabetic rats. Heliyon. (2022) 8(1): 1-11.
Sabarathinam S, Kumar RCS, Vijayakumar TM. Necessity of Herbal Medicine in the Management of Metabolic Syndrome. In: Shiomi N, ed. Lifestyle-Related Diseases and Metabolic Syndrome. IntechOpen (2022) :160.
Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, Ghasempour G, Jahangard Ahvazi R, Meshkani R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res. (2022) 36(1): 415-432.
Chetehouna S, Derouiche S, Réggami Y, Boulaares I, Frahtia A. Gas Chromatography Analysis, Mineral Contents and Anti-inflammatory Activity of Sonchus maritimus. Trop J Nat Prod Res Available. (2024) 3: 6787-6798.
Hameed AT, Al-alh NMA, Jumaa AW. Antioxidant Activity and Phytominerals Study of Some Asteraceae Species Growth in Western of Lraq. Indian J Forensic Med Toxicol. (2021) 15(1): 2239-2245.
Chetehouna S, Derouiche S, Réggami Y. In Vitro Antioxidant and Antidiabetic properties of leaves aqueous extract of Sonchus maritimus. Int J Chem Biochem Sci. (2024) 25(19): 1-8.
Chetehouna S, Derouiche S, Boulaares I, Réggami Y. Phytochemical profile, anti-inflammatory analysis and cytotoxic activity of SmE-SeNPs against breast (MCF-7) cancer cells. Biocatal Agric Biotechnol. (2024) 57: 1-8.
Hegazy M, Elsayed NM, Ali HM, Hassan HG, Rashed L. Diabetes mellitus, nonalcoholic fatty liver disease, and conjugated linoleic acid (OMEGA 6): What is the link? J Diabetes Res. (2019) 2019: 1-7.
Yustisia I, Tandiari D, Cangara MH, Hamid F, Daud NA. A high-fat, high-fructose diet induced hepatic steatosis, renal lesions, dyslipidemia, and hyperuricemia in non-obese rats. Heliyon. (2022) 8(10): e10896.
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules. (2020) 25(1): 1-15.
Derouiche S, Guemari IY, Boulaares I. Characterization and acute toxicity evaluation of the MgO Nanoparticles Synthesized from Aqueous Leaf Extract of Ocimum basilicum L. Alger J Biosci. (2020) 1(1):1-6.
Chetehouna S, Derouiche S, Reggami Y. Green Chemistry Approaches towards the Synthesis of Selenium Nanoparticles (SeNPs) as a Metal Nano-Therapy: Possible Mechanisms of Anticancer Action. Front Biomed Technol. (2024) 11(4): 1-21.
Ouidad A, Sara C, Samir D. Biological properties and Acute Toxicity Study of Copper oxide nanoparticles prepared by aqueous leaves extract of Portulaca oleracea (L) . Asian J Pharm Res. (2020) 10(2): 89-94.
Chetehouna S, Derouiche S, Réggami Y. Green Synthesis of Senps using Sonchus Maritimus Based Nanosized Metal Oxides for in vitro Biological Applications and in vivo Acute Toxicity Evaluation. Kragujev J Sci. (2023) 45: 65-78.
Khodabakhsh F, Bourbour M, Yaraki MT, Bazzazan S, Bakhshandeh H, Cohan RA, Tan YN. pH-Responsive PEGylated Niosomal Nanoparticles as an Active-Targeting Cyclophosphamide Delivery System for Gastric Cancer Therapy. Molecules. (2022) 27(17): 1-25.
Witika BA, Bassey KE, Demana PH, Siwe-Noundou X, Poka MS. Current Advances in Specialised Niosomal Drug Delivery: Manufacture, Characterization and Drug Delivery Applications. Int J Mol Sci. (2022) 23(17): 1-26.
Derouiche S, Abbas K, Djermoune M. Polysaccharides and Ascorbic Acid Content and the Effect of Aqueous Extract of Portulaca Oleracea in High-Fat Diet-Induced Obesity, Dyslipidemia and Liver Damage in Albino Wistar Rats = Contenu des Polysaccharides et Acide Ascorbique et Effet de l’Extrait. Alger J Arid Environ. (2017) 7(2): 16-26.
Mohamad EA, Fahmy HM. Niosomes and liposomes as promising carriers for dermal delivery of annona squamosa extract. Brazilian J Pharm Sci. (2020) 56: 1-8.
Hu Z, Ren L, Wang C, Liu B, Song G. Effect of chenodeoxycholic acid on fibrosis, inflammation and oxidative stress in kidney in high-fructose-fed wistar rats. Kidney Blood Press Res. (2012) 36(1): 85-97.
AlAmri OD, Albeltagy RS, Akabawy MAA, Mahgoub S, Abdel-Mohsen DM, Abdel Moneim AE, Amin HK. Investigation of antioxidant and anti-inflammatory activities as well as the renal protective potential of green coffee extract in high fat-diet/streptozotocin-induced diabetes in male albino rats. J Funct Foods. (2020) 71(May):103996.
Hassan S, Moustafa AA, Kabil SL, Mahmoud NM. Alagebrium mitigates metabolic insults in high carbohydrate and high fat diet fed Wistar rats. Pharm Sci. (2020) 26(1): 13-24.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. (1976) 72(1): 248-254.
Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med. (1976) 15(2): 212-216.
Weckbecker G, Cory JG. Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer Lett. (1988) 40(3): 257-264.
Ellman GL. Tissue Sulfhydryl Groups. Arch Biochem Biophys. (1959) 82(1): 70-77.
Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. (1971) 44(1): 276-287.
Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. (1984) 105: 114-120.
Akar F, Uludaĝ O, Aydin A, et al. High-fructose corn syrup causes vascular dysfunction associated with metabolic disturbance in rats: Protective effect of resveratrol. Food Chem Toxicol. (2012) 50(6): 2135-2141.
Olajide OJ, Yawson EO, Gbadamosi IT, Arogundade TT, Lambe E, Obasi K, Lawal IT, Ibrahim A, Ogunrinola KY. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer’s disease. Environ Toxicol Pharmacol. (2017) 50: 200-211. doi:10.1016/j.etap.2017.02.010
Gancheva S, Zhelyazkova-Savova M, Galunska B, Chervenkov T. Experimental models of metabolic syndrome in rats. Scr Sci Medica. (2015) 47(2): 14-21.
Andrade N, Andrade S, Silva C, Rodrigues I, Guardão L, Guimarães JT, Keating E, Martel F. Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats. Eur J Nutr. (2020) 59(1): 151-165.
Li W, Lu Y. Hepatoprotective Effects of Sophoricoside against Fructose-Induced Liver Injury via Regulating Lipid Metabolism, Oxidation, and Inflammation in Mice. J Food Sci. (2018) 83(2): 552-558.
Derouiche S, Chetehouna S, Atoussi W. The effects of aqueous leaf extract of Portulaca oleracea on haemato-biochemical and histopathological changes induced by sub-chronic aluminium toxicity in male wistar rats. Pharmacol Res - Mod Chinese Med. (2022) 4: 100101.
Ahmad S, Zeb A. Effects of phenolic compounds from aqueous extract of Trifolium repens against acetaminophen-induced hepatotoxicity in mice. J Food Biochem. (2019) 43(9): 1-11.
Hegazy M, Elsayed NM, Ali HM, Hassan HG, Rashed L. Diabetes mellitus, nonalcoholic fatty liver disease, and conjugated linoleic acid (OMEGA 6): What is the link? J Diabetes Res. (2019) 2019: 1-7.
Alkreathy MM, Khan AA, Khan RR, Sahreen S. CCl4 induced genotoxicity and DNA oxidative damages in rats: Hepatoprotective effect of Sonchus arvensis. BMC Complement Altern Med. (2014) 14(1): 2-8.
Al-Megrin WA, El-Khadragy MF, El-Khadragy MF, et al. Green Coffea arabica Extract Ameliorates Testicular Injury in High-Fat Diet/Streptozotocin-Induced Diabetes in Rats. J Diabetes Res. (2020) 2020: 1-13.
Bojarski B, Sowi N, Strus M, Chmurska-g M. Changes in Leukogram and Erythrogram Results in Bitches with Vaginitis. Animals. (2021) 11(5): 1-7.
Arafa D, Elshobaky G, Risha E, Abdelhamid F. Potential Effects of Vitamin D and Resveratrol on Hematological and Renal Indicators Associated with Metabolic Syndrome in Rats. Mansoura Vet Med J. (2023) 24(3): 19-26.
Kilany OE, Abdelrazek HMA, Aldayel TS, Abdo S, Mahmoud MMA. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi J Biol Sci. (2020) 27(10): 2733-2746.
Cardinali DP, Hardeland R. Inflammaging, Metabolic Syndrome and Melatonin: A Call for Treatment Studies. Neuroendocrinology. (2017) 104(4): 382-397. doi:10.1159/000446543
Barale C, Russo I. Influence of cardiometabolic risk factors on platelet function. Int J Mol Sci. (2020) 21(2):1-27.
Kamble SS, Killedar SG, Jarag RJ, Dol HS. Screening and evaluation of Sonchus asper n-hexane extract against Phenylhydrazine induced anemia. Int J Adv Res Dev. (2019) 4(1): 68-74. www.IJARND.com
Lim H, Park H, Kim HP. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem Pharmacol. (2015) 96(4): 337-348.
Wahyuni DK, Wacharasindhu S, Bankeeree W, et al. In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L. BMC Complement Med Ther. (2023) 23(1): 1-12. doi:10.1186/s12906-023-03871-7
Ren Y, Hou S, He J, Chang N, Zhang Z, Zhou Y. Total flavones from Sonchus arvensis L. ameliorate colitis by adjusting the gut microbiota. Ann Med. (2023) 55(2): 1-11.
Shi YS, Li C Bin, Li XY, et al. Fisetin Attenuates Metabolic Dysfunction in Mice Challenged with a High-Fructose Diet. J Agric Food Chem. (2018) 66(31): 8291-8298. doi:10.1021/acs.jafc.8b02140
Gubur S, Ercan A, Coskun Yazici ZM. Protective effects of green tea on blood and liver of rats fed with high fructose diet. Acta Aliment. (2022) 51(3): 437-447.
Mehta R, Sonavane M, Migaud ME, Gassman NR. Exogenous exposure to dihydroxyacetone mimics high fructose induced oxidative stress and mitochondrial dysfunction. Environ Mol Mutagen. (2021) 62(3): 185-202.
Cazzola M, Rogliani P, Santosh S, Josuel S, Maria O, Matera G. Use of Thiols in the Treatment of COVID ‑ 19 : Current Evidence. Lung. (2021) 199(4): 335-343. [57] Kütük A, Akar F, Sadi G. Changes in hepatic thiol contents and regulation of glutathione S-transferase by high-fructose diet : Effects of kefir and some probiotic bacteria. Heal Sci Q. (2023) 3(2): 127-137.
Weaver K, Skouta R. The Selenoprotein Glutathione Peroxidase 4 : From Molecular Mechanisms to Novel Therapeutic Opportunities. biomedicines. (2022) 10: 1-20.
Chenni A, Cherif FZH, Chenni K, Elius EE, Pucci L, Yahia DA. Effects of Pumpkin (Cucurbita pepo L.) Seed Protein on Blood Pressure, Plasma Lipids, Leptin, Adiponectin, and Oxidative Stress in Rats with Fructose-Induced Metabolic Syndrome. Prev Nutr Food Sci. (2022) 27(1): 78-88.
Arias-Chávez DJ, Mailloux-Salinas P, Altamirano J, Huang F, Gómez-Viquez NL, Bravo G. Consumption of combined fructose and sucrose diet exacerbates oxidative stress, hypertrophy and CaMKIIδ oxidation in hearts from rats with metabolic syndrome. Mol Cell Biochem. (2022) 477(4): 1309-1320.
Liu K, Luo M, Wei S. The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress : Evidences and Perspectives. Oxid Med Cell Longev. (2019) 2019: 1-17.
Handayani D, Febrianingsih E, Kurniawati AD, et al. High-fructose diet initially promotes increased aortic wall thickness, liver steatosis, and cardiac histopathology deterioration, but does not increase body fat index. J Public health Res. (2021) 10(2): 1-7.
Vashishth K, Singh SK, Jain A, Bhatia A, Sharma YP. Pathological involvement of apoptotic and inflammatory molecules in cardiovascular remodeling in rats on high fructose diet‐induced metabolic syndrome. J Food Biochem. (2022) 46(7): e14107.
Dotto JM, Chacha JS. The potential of pumpkin seeds as a functional food ingredient: A review. Sci African. (2020) 10: e00575.
Bagetta D, Maruca A, Lupia A, Mesiti F, Catalano R, et al. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. Eur J Med Chem. (2020) 186: 111903.
- Abstract Viewed: 190 times
- IJPS_Volume20_Issue3_ Pages 271-282 Downloaded: 87 times