The Chemical Composition of Salvia macrosiphon Seed The Chemical Composition of Salvia macrosiphon Seed
Iranian Journal of Pharmaceutical Sciences,
Vol. 19 No. 2 (2023),
1 April 2023
,
Page 166- 175
https://doi.org/10.22037/ijps.v19i2.43809
Abstract
The Lamiaceae family of plants includes Salvia macrosiphon, one of the therapeutic plants. In Iran, S. macrosiphon seeds are used as a remedy to prevent or treat numerous diseases. The chia seed, also known as Salvia hispanica, has beneficial effects on human health. This study examines the chemical composition and nutritional value of S. macrsoiphon seeds. In some previous research, S. macrosiphon seeds components were compared with Salvia hispanica's. In February 2021, S. macrosiphon seeds were bought from an herbal market; after they were authenticated, seed oil was obtained, and its chemical constituents were examined. S. macrosiphon seeds contain the following nutrients per 100 g: calcium 0.47 g, phosphorus 0.186 g, magnesium 9.75 g, moisture 5.2 g, ash 5.55 g, crude protein 18.92 g, crude fiber 22.2 g, carbohydrates 4.49 g, starch 17.25 g, total fiber 53.04 g, ADF (acid detergent fiber) 23.0 g, ADL (acid detergent lignin) 9.75 g, S. macroiphon seeds have 58.5059 calories total energy per gram. Fatty acids abound in S. macrosiphon oil, particularly linolenic (38.7%) and linoleic (24.5%) acids. Analysis and comparisons reveal that the chemical components obtained from S. macrosiphon and S. hispanica seeds are strikingly similar in quantity.
- Salvia macrosiphon
- Chemical composition
- Nutritional value
- linoleic acids
- crude protein
- crude fiber
How to Cite
References
Ghahreman A. Fora of Iran. Tehran: Research inistitue of forest and rangelands; 1989.
Hedge IC, Lamond JM. Flora Iranica, 113. Aizoaceae: Graz: Akademische Druck-u. Verlagsanstalt; 1975.
Sadat-Hosseini M, Arab MM, Soltani M, Eftekhari M, Soleimani A. Applicability of soft computing techniques for in vitro micropropagation media simulation and optimization: A comparative study on Salvia macrosiphon Boiss. Industrial Crops and Products. 2023; 199: 116750.
Hamedi A, Jamshidzadeh A, Ahmadi S, Sohrabpour M, Zarshenas M. Salvia macrosiphon seeds and seed oil: pharmacognostic, anti-inflammatory and analgesic properties. Research Journal of Pharmacognosy. 2016;3(4):27-37.
Balaei-Kahnamoei M, Eftekhari M, Ardekani MRS, Akbarzadeh T, Saeedi M, Jamalifar H, et al. Phytochemical constituents and biological activities of Salvia macrosiphon Boiss. BMC Chemistry. 2021;15(1):4.
Sefidkon F, Mirza M, Javidtash I. Essential oil composition of Salvia macrosiphon Boiss. from Iran. Journal of essential Oil Bearing Plants. 2005;8(2):126-9.
Moazzami Farida SH, Radjabian T, Ranjbar M, Salami SA, Rahmani N, Ghorbani A. Fatty acid patterns of seeds of some Salvia species from Iran–a chemotaxonomic approach. Chemistry & Biodiversity. 2016;13(4):451-8.
Gohari AR, Ebrahimi H, Saeidnia S, Foruzani M, Ebrahimi P, Ajani Y. Flavones and flavone glycosides from Salvia macrosiphon Boiss. Iranian journal of pharmaceutical research: IJPR. 2011; 10(2): 247.
Javidnia K, Miri R, Jamalian A. Composition of the essential oil of Salvia macrosiphon Boiss. from Iran. Flavour and fragrance journal. 2005; 20(5): 542-3.
Motyka S, Koc K, Ekiert H, Blicharska E, Czarnek K, Szopa A. The Current State of Knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules. 2022;27(4):1207.
Vuksan V, Jenkins A, Brissette C, Choleva L, Jovanovski E, Gibbs A, et al. Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial. Nutrition, Metabolism and Cardiovascular Diseases. 2017;27(2):138-46.
Tak Y, Kaur M, Kumar R, Gautam C, Singh P, Kaur H, et al. Repurposing chia seed oil: A versatile novel functional food. Journal of Food Science. 2022;87(7):2798-819.
Clegg K. The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture. 1956; 7(1): 40-4.
Van Soest Pv, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 1991;74(10): 3583-97.
Horowitz W, Latimer G. Official methods of analysis of AOAC International. Gaithersburg, Md AOAC International. 2006;18.
DeVries J, Camire M, Cho S, Craig S, Gordon D, Jones J, et al. The definition of dietary fiber. Cereal foods world. 2001;46(3):112-29.
Konieczynski P, Wesolowski M. Total phosphorus and its extractable form in plant drugs. Interrelation with selected micro-and macroelements. Food chemistry. 2007;103(1):210-6.
Bernert Jr JT. Gas Chromatography and Lipids, a Practical Guide. William W. Christie. Ayr, Scotland: The Oily Press. 307 pp, $52.50, ISBN 0-9514171-X. Clinical Chemistry. 1989;35(9):2021-.
Spiller GA. CRC handbook of dietary fiber in human nutrition: CRC press; 2001.
Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of agricultural and food chemistry. 1985;33(2):213-7.
Bosch L, Alegria A, Farre R. RP-HPLC determination of tiger nut and orgeat amino acid contents. Food science and technology international. 2005;11(1):33-40.
Jing Y, Hu J, Su Z, Cheng W, Zhang Y, Yang X, et al. Structural characterisation and antioxidant activities in vitro and in vivo of a novel polysaccharide from Salvia miltiorrhiza. Natural Product Research. 2023;37(6):1006-11.
Vahdani M, Faridi P, Zarshenas MM, Javadpour S, Abolhassanzadeh Z, Moradi N, et al. Major Compounds and antimicrobial activity of essential oils from five iranian endemic medicinal plants. Pharmacognosy Journal. 2011;3(22):48-53.
Di Marco AE, Ixtaina VY, Tomás MC. Inclusion complexes of high amylose corn starch with essential fatty acids from chia seed oil as potential delivery systems in food. Food Hydrocolloids. 2020;108:106030.
Petropoulos SA, Fernandes Â, Arampatzis DA, Tsiropoulos NG, Petrović J, Soković M, et al. Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. LWT. 2020;123:109099.
Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A, et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of food science and technology. 2016;53(4):1750-8.
Reyes-Caudillo E, Tecante A, Valdivia-Lopez MA. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food chemistry. 2008; 107(2): 656-63.
Din Z-u, Alam M, Ullah H, Shi D, Xu B, Li H, et al. Nutritional, phytochemical and therapeutic potential of chia seed (Salvia hispanica L.). A mini-review. Food Hydrocolloids for Health. 2021; 1: 100010.
da Silva BP, Anunciação PC, da Silva Matyelka JC, Della Lucia CM, Martino HSD, Pinheiro-Sant'Ana HM. Chemical composition of Brazilian chia seeds grown in different places. Food chemistry. 2017;221: 1709-16.
Ali NM, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG. The promising future of chia, Salvia hispanica L. Journal of Biomedicine and Biotechnology. 2012;2012.
Oliva ME, Ferreira MdR, Vega Joubert MB, D'Alessandro ME. Salvia hispanica L. (chia) seed promotes body fat depletion and modulates adipocyte lipid handling in sucrose-rich diet-fed rats. Food Research International. 2021;139:109842.
Otondi EA, Nduko JM, Omwamba M. Physico-chemical properties of extruded cassava-chia seed instant flour. Journal of Agriculture and Food Research. 2020;2:100058.
- Abstract Viewed: 270 times
- IJPS_Volume19_Issue2_Pages 166-175 Downloaded: 99 times