In vitro antimalarial activity of the biosurfactant produced by Serratia marcescens MBC1 Antimalarial activity from biosurfactant
Iranian Journal of Pharmaceutical Sciences,
Vol. 18 No. 3 (2022),
1 July 2022
,
Page 214-222
https://doi.org/10.22037/ijps.v18.42666
Abstract
Serratia is a bacterium with a distinctive red-pigment prodigiosin, known as a plasmodium growth inhibitor. This species is also known for its reliability as a producer of biosurfactants. Furthermore, the ability of these bacteria to reduce the interface tension in antimalarial activity has not been reported. Therefore, this study aimed to develop biosurfactants as antimalarial drugs candidate. Additionally, tryptone Soy Broth is used as a fermented media to produce biosurfactants with the addition of Serratia marcescens MBC1. Biosurfactant activity was evaluated on a hydrocarbon substrate consisting of used motor lubricants, used-cooking oil, and diesel. Emulsifying activity, oil spread test, blue agar, and infrared spectroscopy were methods used for evaluating biosurfactants. Used motor lubricants produced the highest emulsification index at 41.40%. Spectroscopic results using Fourier-transform infrared spectroscopy (FTIR) revealed that the compounds contain glycolipids and lipopeptides. The antimalarial test using Plasmodium falciparum d37 obtained an inhibitory concentration 50 of 3.66 µg/mL. There was limited information on the toxicity of biosurfactants in cells of Plasmodium parasites. The use of biosurfactants from Serratia marcescens MBC1 to control plasmodium infection needs to be improved to provide an alternative to malaria control from natural ingredients.
- Antimalarial
- Biosurfactant
- Glycolipid
- Lipopeptide
- Serratia sp
How to Cite
References
[2] Orabuezea CI, Ota DA, Coker HA. Antimalarial potentials of Stemonocoleus micranthus Harms (leguminoseae) stem bark in Plasmodium berghei infected mice. J. Tradit. Complement. Med (2020)10 (1): 70–78. DOI: 10.1016/j.jtcme.2019.03.001.
[3] Duzhak AB, Panfilova ZI, Pankova TG, Igonina TM, Zakharova OD, Vasyunina EA. Prodigiosin from Serratia marcescens suppresses the in vitro development of chloroquine-sensitive and chloroquine-resistant strains of rodent malaria parasite Plasmodium berghei. Russ. J. Biopharm (2012) 4: 7–13. Jan.
[4] Costa JAV, Treichel H, Santos LO, Martins VG. Chapter 16 - Solid-State Fermentation for the Production of Biosurfactants and Their Applications. in Current Developments in Biotechnology and Bioengineering. A. Pandey, C. Larroche, and C. R. B. T.-C. D. in B. and B. Soccol, Eds. Elsevier (2018): 357–372.
[5] Araújo HWC, Andrade RFS, Montero-Rodríguez D, Rubio-Ribeaux D, Alves Da Silva CA, Campos-Takaki GM. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb. Cell Fact (2019) 18 (1): 1–13. doi: 10.1186/s12934-018-1046-0.
[6] Matsuyama T, Tanikawa T, Nakagawa Y, Serrawettins and Other Surfactants Produced by Serratia. in Microbiology Monographs (2010) (20): 93–120.
[7] Arifiyanto A, Afriani H, Putri MH, Damayanti B, Riyanto CLR. The biological perspective of red-pigmented bacteria cultured from contaminated agar media. Biodiversitas, J. Biol. Divers (2021) 22 (3): 1152–1159. doi: 10.13057/biodiv/d220310.
[8] Lestari MD, Nukmal N, Setyaningrum E, Farisi S, Arifiyanto A. Larvicide Effects of Serratia marcescens strain MBC1 Extract on Instar III Larvae of Aedes aegypti, J. Ilm. Biol. Eksperimen dan Keanekaragaman Hayati (2022) 9 (1): 42–48. Jan. doi: 10.23960/jbekh.v9i1.219.
[9] Riyanto CLR, Sumardi, Farisi S, Ekowati CN, Arifiyanto A. Aktivitas Biosurfaktan Serratia Marcescens strain MBC1 dalam Mengemulsikan Solar dengan Variasi pH dan Media. J. Sumberd. Alam dan Lingkung (2021) 8 (3): 114–122. doi: 10.21776/ub.jsal.2021.008.03.3.
[10] Castro AJ. Antimalarial Activity of Prodigiosin. Nat. Publ. Gr (1967) 213 (5079): 903–904. doi: 10.1038/213903a0.
[11] Purkayastha GD, Mangar P, Saha A, Saha D. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS One (2018)13 (2):1–27. doi: 10.1371/journal.pone.0191761.
[12] Hage-Hülsmann J et al. Natural biocide cocktails : Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One (2018) 13(7): 1–23. doi: 10.1371/journal.pone.0200940.
[13] Varadavenkatesan T, Murty VR. Production of a Lipopeptide Biosurfactant by a Novel Bacillus sp. and Its Applicability to Enhanced Oil Recovery. ISRN Microbiol (2013) :621519. doi: 10.1155/2013/621519.
[14] Morikawa M, Hirata Y, Imanaka T. A study on the structure–function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids (2000) 1488 (3): 211–218. doi: https://doi.org/10.1016/S1388-1981(00)00124-4.
[15] Ibrahim HMM. Characterization of biosurfactants produced by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from used engine oil-contaminated soil. Egypt. J. Pet (2018) 27 (1): 21–29. doi: 10.1016/j.ejpe.2016.12.005.
[16] Sinha S, Sarma P, Sehgal R, Medhi B. Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review. Front. Pharmacol (2017) 8 (754). doi: 10.3389/fphar.2017.00754.
[17] Clements T, Ndlovu T, Khan S, Khan W. Biosurfactants produced by Serratia species: Classification, biosynthesis, production, and application. Appl. Microbiol. Biotechnol (2019) 103(2): 589–602. Jan. doi: 10.1007/s00253-018-9520-5.
[18] Nayarisseri A, Singh P, Singh SK. Screening, isolation, and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bio information (2018) 14 (6): 304–314. Jun. doi: 10.6026/97320630014304.
[19] Arifiyanto A, Surtiningsih T, Ni’matuzahroh, Fatimah, Agustina D, Alami N. Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatal. Agric. Biotechnol (2020) 24. Mar. doi: 10.1016/j.bcab.2020.101513.
[20] Deng Z et al. One Biosurfactant-Producing Bacteria Achromobacter sp. A-8 and Its Potential Use in Microbial Enhanced Oil Recovery and Bioremediation. Front. Microbiol (2020) 11(247). doi: 10.3389/fmicb.2020.00247.
[21] Sun W et al. Isolation and characterization of biosurfactant-producing and diesel oil degrading Pseudomonas sp. CQ2 from Changqing oil field, China. RSC Adv (2018) 8 (69): 39710–39720. doi: 10.1039/C8RA07721E.
[22] Singh P, Tiwary BN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresour. Bioprocess (2016) 3(1): 42, doi: 10.1186/s40643-016-0119-3.
[23] Ferreira-Villadiego J, Garcia-Echeverri J, Mejia V, Pasqualino J, Meza-Catellar P, Lambis H. Chemical Modification and Characterization of Starch Derived from Plantain (Musa paradisiaca) Peel Waste, as a Source of Biodegradable Material, Chem. Eng. Trans (2018) 65: 763-768. Jun. doi: 10.3303/CET1865128.
[24] Szafrański K, Sławiński J, Tomorowicz Ł, Kawiak A. Synthesis Anticancer Evaluation and Structure-Activity Analysis of Novel (E)- 5-(2-Arylvinyl)-1,3,4-oxadiazol-2-yl)benzenesulfonamides. Int j mol sci (2020) 21(6): 107. doi: 10.3390/ijms21062235.
[25] Fockaert LI et al. ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for magnesium substrates. Electrochim. Acta (2020) 345:136166. doi: https://doi.org/10.1016/j.electacta.2020.136166.
[26] Damayanti B et al. Pengaruh Media Pertumbuhan dan pH Terhadap Aktivitas Biosurfaktan dari Bakteri Serratia marcescens strain MBC 1 pada Minyak Jelantah, IJCA (Indonesian J. Chem. Anal) (2022) 5 (1): 01–08. doi: 10.20885/ijca.vol5.iss1.art1.
[27] Iwasaki K et al. Ikoamide, an Antimalarial Lipopeptide from an Okeania sp. Marine Cyanobacterium. J. Nat. Prod (2020) 83 (2): 481–488. Feb. doi: 10.1021/acs.jnatprod.9b01147.
[28] Farokhi F et al. Antimalarial activity of axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi. Mar. Drugs (2013) 11 (4): 1304–1315. Apr. doi: 10.3390/md11041304.
[29] Li X et al. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl. Acad. Sci. (2010)107 (29): 13010–13015. doi: 10.1073/pnas.1006662107.
[30] Padte NN et al. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates. PLoS One (2013) 8 (10): e78407. doi: 10.1371/journal.pone.0078407.
[31] Briolant S et al. Influence of oxygen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of a standardized in vitro assay. Malar. J (2007) 6 (1): 44. doi: 10.1186/1475-2875-6-44.
[32] Parthipan P et al. Biosurfactants produced by Bacillus subtilis A1 and Pseudomonas stutzeri NA3 reduce the longevity and fecundity of Anopheles stephensi and show high toxicity against young instars. Environ. Sci. Pollut. Res. Int. (2018) 25 (11): 10471–10481. Apr. doi: 10.1007/s11356-017-0105-0.
[33] Kaczorek E, Pacholak A, Zdarta A, Smułek W. The Impact of Biosurfactants on Microbial Cell Properties Leading to Hydrocarbon Bioavailability Increase. Colloids and Interfaces (2018) 2 (3): 35. doi: 10.3390/colloids2030035.
- Abstract Viewed: 215 times
- IJPS- Vol 18- Issue 3- 214-222 Downloaded: 103 times