The Effects of WiFi Network (2.45 GHz) on Rats with Induced Stroke Associated with an Increased Risk of Heart Attack
Archives of Advances in Biosciences,
Vol. 10 No. 2 (2019),
15 April 2019
,
Page 1-9
https://doi.org/10.22037/jps.v10i2.24145
Abstract
Introduction: Stroke and heart attack are the most common causes of death among humans. Troponin I, Creatine Kinae-MB (CK-MB) and Lactate Dehydrogenase (LDH) are the diagnostic markers of heart attack which can also be used as high risk biomarkers. WiFi is a cheap common technology which exposes its users to a spectrum of electromagnetic waves. Can weak electromagnetic waves affect human health?
Materials and Methods: In this study, stroke in rats has been induced, and then they were exposed to WiFi waves (2.45 GHz) and finally were examined for the risk of heart attack through analyzing three enzyme biomarkers related to heart attack (Troponin I, CK-MB and LDH).
Results: This study’s results confirm WiFi’s biological effects and shows WiFi’s contribution in stroke. WiFi2.45GHz exposure affects three cardiac enzyme markers of heart attack (LDH, Troponin I and CK-MB), considering the current data on WiFi exposure effects on the brain, heart and related enzymes.
Conclusion: Some of the WiFi wave’s cellular targets include cell membrane, cellular proteins and enzymes. Despite all the data and reports on biological effects of electromagnetic fields, the range and rate of these effects has not yet been determined.
- Stroke
- Heart attack
- Troponin I
- CK-MB
- LDH
- WiFi
How to Cite
References
Chan SJ, Love C, Spector M, Cool SM, Nurcombe V, Lo EH. Endogenous regeneration: Engineering growth factors for stroke. Neurochem Int. 2017;107(16):57-65. doi: 10.1016/j.neuint.2017.03.024.
Roy A, Lara A, Guimarães D, Pires R, Gomes ER, Carter DE, et al. An analysis of the myocardial transcriptome in a mouse model of cardiac dysfunction with decreased cholinergic neurotransmission. PLoS One. 2012; 7(6):e39997. doi: 10.1371/journal.pone.0039997.
Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol. 1993;22:72A-84A.
Aydogdu U, Yildiz R, Guzelbektes H, Coskun A, Sen I. Cardiac biomarkers in premature calves with respiratory distress syndrome. Acta Vet Hung. 2016; 64(1):38-46. doi: 10.1556/004.2016.004.
Futterman LG, Lemberg L. SGOT, LDH, HBD, CPK, CK-MB, MB1MB2, cTnT, cTnC, cTnI. Am J Crit Care. 1997; 6(4):333-38.
Mair J. Cardiac troponin I and troponin T: are enzymes still relevant as cardiac markers? Clin Chim Acta. 1997; 257(1): 99-115.
Perna ER, Címbaro Canella JP, Coronel ML, Macin SM. The predictive value of plasma biomarkers in discharged heart failure patients: role of troponin I/T. Minerva Cardioangiol. 2016;64(2):165-80.
Cardinaels EP, Daamen MA, Bekers O, Ten Kate J, Niens M, van Suijlen JD, et al. Clinical Interpretation of Elevated Concentrations of Cardiac Troponin T, but Not Troponin I, in Nursing Home Residents. J Am Med Dir Assoc. 2015;16(10):884-91. doi: 10.1016/j.jamda.2015.06.026.
Budincevic H, Sremec J, Crnac P, Ostojic V, Galic E, Bielen I. Impact of troponin I on outcome of ischemic stroke patients. Rom J Intern Med. 2017;55(1):19-22. doi: 10.1515/rjim-2016-0044.
Mavrakanas TA, Sniderman AD, Barré PE, Vasilevsky M, Alam A. High Ultrafiltration Rates Increase Troponin Levels in Stable Hemodialysis Patients. Am J Nephrol. 2016; 43(3):173-78. doi: 10.1159/000445360.
Diamond TH, Smith R, Goldman AP, Myburgh DP, Bloch JM, Visser F. The dilemma of the creatine kinase cardiospecific iso-enzyme (CK-MB) in marathon runners. S Afr Med J. 1983;63(2):37-41.
Fan J, Ma J, Xia N, Sun L, Li B, Liu H. Clinical Value of Combined Detection of CK-MB, MYO, cTnI and Plasma NT-proBNP in Diagnosis of Acute Myocardial Infarction. Clin Lab. 2017;63(3):427-33. doi: 10.7754/Clin.Lab.2016.160533.
Kanji J, Fan J. Discordant creatine kinase and cardiac troponin T in the workup of acute coronary syndrome. CJEM. 2010;12(1):64-8.
Subbaiah GV, Mallikarjuna K, Shanmugam B, Ravi S, Taj PU, Reddy KS. Ginger Treatment Ameliorates Alcohol-induced Myocardial Damage by Suppression of Hyperlipidemia and Cardiac Biomarkers in Rats. Pharmacogn Mag. 2017;13(Suppl 1):S69-75. doi: 10.4103/0973-1296.203891.
Lu A, Wang C, Zhang X, Wang L, Qian L. Lactate Dehydrogenase as a Biomarker for Prediction of Refractory Mycoplasma pneumoniae Pneumonia in Children. Respir Care. 2015;60(10):1469-75. doi: 10.4187/respcare.03920.
Hosseinyzadeh Z, Shojaeefard M, Ataeinejad N, Pooladi M, Hooshiyar M. The investigation of the protective effects of hydroalcoholic extract of sea buckthorn (Hippophaerhamnoides L) in spermatogenesis of rat after exposure of Wi-Fi radiation. Journal of Paramedical Sciences. 2015;4(2):1-9.
Pooladi M, Montzeri AR, Nazarian N, Taghizadeh B, Odoumizadeh M. Effect of WiFi waves (2.45 GHz) on aminotransaminases (ALP, ALT and AST) in liver of rat. Journal of Paramedical Sciences. 2018; 9(2):13-20
Salah MB, Abdelmelek H, Abderraba M. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol. 2013;36(3):826-34. doi: 10.1016/j.etap.2013.07.013.
Sambucci M, Laudisi F, Nasta F, Pinto R, Lodato R, Altavista P, et al. Prenatal exposure to non-ionizing radiation: effects of WiFi signals on pregnancy outcome, peripheral B-cell compartment and antibody production. Radiat Prot Dosimetry. 2010;140(4):326-32. doi: 10.1667/RR2255.1.
Wind DK, Sapiezynski P, Furman MA, Lehmann S. Inferring Stop-Locations from WiFi. PLoS One. 2016;11(2):e0149105. doi: 10.1371/journal.pone.0149105.
Hailan J, Jing L. [Research on WiFi-based wireless microscopy on a mobile phone and its application]. Zhongguo Yi Liao Qi Xie Za Zhi. 2012;36(6):391-5.
Kuzniar A, Laffeber C, Eppink B, Bezstarosti K, Dekkers D, Woelders H, et al. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields. PLoS One. 2017;12(2):e0170762. doi: 10.1371/journal.pone.0170762.
Laudisi F, Sambucci M, Nasta F, Pinto R, Lodato R, Altavista P, et al. Prenatal exposure to radiofrequencies: effects of WiFi signals on thymocyte development and peripheral T cell compartment in an animal model. Bioelectromagnetics. 2012;33(8):652-61. doi: 10.1002/bem.21733.
Çelik Ö, Kahya MC, Nazıroğlu M. Oxidative stress of brain and liver is increased by Wi-Fi (2.45GHz) exposure of rats during pregnancy and the development of newborns. J Chem Neuroanat. 2016;75(Pt B):134-9. doi: 10.1016/j.jchemneu.2015.10.005.
Shokri S, Soltani A, Kazemi M, Sardari D, Mofrad FB. Effects of Wi-Fi (2.45 GHz) Exposure on Apoptosis, Sperm Parameters and Testicular Histomorphometry in Rats: A Time Course Study. Cell J. 2015;17(2):322-331.
Aynali G, Nazıroğlu M, Çelik Ö, Doğan M, Yarıktaş M, Yasan H. Modulation of wireless (2.45 GHz) -induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin. Eur Arch Otorhinolaryngol. 2013;270(5):1695-700. doi: 10.1007/s00405-013-2425-0.
Yüksel M, Nazıroğlu M, Özkaya MO. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring. Endocrine. 2016;52(2):352-362. doi: 10.1007/s12020-015-0795-3.
Tök L, Nazıroğlu M, Doğan S, Kahya MC, Tök O. Effects of melatonin on Wi-Fi- Induced oxidative stress in lens of rats. Indian J Ophthalmol. 2014;62(1):12-5. doi: 10.4103/0301-4738.126166.
- Abstract Viewed: 277 times
- PDF Downloaded: 190 times