Pre-Operative Workup of Cochlear Implant
Journal of Otorhinolaryngology and Facial Plastic Surgery,
Vol. 10 No. 1 (2024),
13 March 2024
,
Page 1-9
https://doi.org/10.22037/orlfps.v10i1.45407
Abstract
Hearing loss, an increasing problem across the globe, results in an important solution in the form of cochlear implants, highlighting the critical need for effective interventions. This review involves analyzing 46 relevant publications via databases such as PubMed and Google Scholar, providing current insights into pre-operative issues. Studies through databases such as PubMed and Google Scholar, ensuring contemporary insights into the pre-operative considerations. The pre-operative evaluation encompasses medical history, covering prenatal events and immediate post-natal health, along with physical examinations and complete audiometric assessments. High-Resolution Computed Tomography (HRCT) and Magnetic Resonance Imaging (MRI) emerge as crucial imaging techniques, guiding surgical planning and electrode placement. Brainstem Evoked Response Audiometry (BERA) supplements inconclusive MRI data, while vestibular screening aids in candidate selection. Cochlear duct length determination, often assessed through imaging techniques, contributes to optimal electrode array selection. Models in cochlear implant research, spanning computational, animal, tissue engineering, and physical models, further enhance our understanding and refinement of cochlear implant designs. In conclusion, this comprehensive pre-operative workup plays a significant role in assessing patient health, identifying causes of deafness, and contributing to the overall success of cochlear implantation, a transformative solution for profound hearing impairment.
- Hearing loss; Cochlear implants; Audiometric assessment; Vestibular screening.
How to Cite
References
Health Quality Ontario. Bilateral cochlear implantation: A health technology assessment. Ont Health Technol Assess Ser. 2018;18(6):1–139.
Bai S, Encke J, Obando-Leitón M, Weiß R, Schäfer F, Eberharter J, et al. Electrical stimulation in the human cochlea: A computational study based on high-resolution micro-CT scans. Front Neurosci [Internet]. 2019;13. Available from: http://dx.doi.org/10.3389/fnins.2019.01312
Martini A, Bovo R, Trevisi P, Forli F, Berrettini S. L’impianto cocleare nel bambino: razionale, indicazioni, costo/efficacia [Cochlear implant in children: rational, indications and cost/efficacy. Minerva pediatrica. 2013;65(3):325–39.
Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021. Bull World Health Organ [Internet]. 2021;99(4):242-242A. Available from: http://dx.doi.org/10.2471/blt.21.285643
Hainarosie M, Zainea V, Hainarosie R. The evolution of cochlear implant technology and its clinical relevance. J Med Life. 2014;7 Spec No. 2:1–4.
Ambrosio AA, Loundon N, Vinocur D, Kruk P, Le Pointe HD, Chalard F, et al. The role of computed tomography and magnetic resonance imaging for preoperative pediatric cochlear implantation work-up in academic institutions. Cochlear Implants Int [Internet]. 2021;22(2):96–102. Available from: http://dx.doi.org/10.1080/14670100.2020.1830239
Alzahrani MA, Aldajani NF, Alghamdi SA. Guidelines for cochlear implantation in Saudi Arabia. Saudi Med J [Internet]. 2021;42(12):1265–71. Available from: http://dx.doi.org/10.15537/smj.2021.42.12.20210262
Szyfter W, Karlik M, Sekula A, Harris S, Gawęcki W. Current indications for cochlear implantation in adults and children. Otolaryngol Pol [Internet]. 2019;73(3):1–5. Available from: http://dx.doi.org/10.5604/01.3001.0013.1000
Kılıç S, Bouzaher MH, Cohen MS, Lieu JEC, Kenna M, Anne S. Comprehensive medical evaluation of pediatric bilateral sensorineural hearing loss. Laryngoscope Investig Otolaryngol [Internet]. 2021;6(5):1196–207. Available from: http://dx.doi.org/10.1002/lio2.657
Saunders AZ, Stein AV, Shuster NL. Audiometry. 1990 [cited 2023 Nov 18]; Available from: https://pubmed.ncbi.nlm.nih.gov/21250083/
Carl AC, Hohman MH, Cornejo J. Audiology Pure Tone Evaluation. StatPearls Publishing; 2023.
Seidman DA, Chute PM, Parisier S. Temporal bone imaging for cochlear implantation. Laryngoscope [Internet]. 1994;104(5):562–5. Available from: http://dx.doi.org/10.1002/lary.5541040510
Parry DA, Booth T, Roland PS. Advantages of magnetic resonance imaging over computed tomography in preoperative evaluation of pediatric cochlear implant candidates. Otol Neurotol [Internet]. 2005;26(5):976–82. Available from: http://dx.doi.org/10.1097/01.mao.0000185049.61770.da
Widmann G, Dejaco D, Luger A, Schmutzhard J. Pre- and post-operative imaging of cochlear implants: a pictorial review. Insights Imaging [Internet]. 2020;11(1). Available from: http://dx.doi.org/10.1186/s13244-020-00902-6
Seicshnaydre MA, Johnson MH, Hasenstab MS, Williams GH. Cochlear implants in children: Reliability of computed tomography. Otolaryngol Head Neck Surg [Internet]. 1992;107(3):410–7. Available from: http://dx.doi.org/10.1177/019459989210700312
Luxford WM, House WF. Cochlear implants in children: Medical and surgical considerations. Ear Hear [Internet]. 1985;6(SUPPLEMENT):20S-23S. Available from: http://dx.doi.org/10.1097/00003446-198505001-00005
Balkany T, Dreisbach J, Cohen N, Martinez S, Valvassori G. Workshop: surgical anatomy and radiographic imaging of cochlear implant surgery. Am J Otol. 1987;8(3):195–200.
Morgan WE, Coker NJ, Jenkins HA. Histopathology of temporal bone fractures: Implications for cochlear implantation. Laryngoscope [Internet]. 1994;104(4):426–32. Available from: http://dx.doi.org/10.1288/00005537-199404000-00006
Levine SC. A complex case of cochlear implant electrode placement. Otol Neurotol [Internet]. 1989;10(6):477–80. Available from: http://dx.doi.org/10.1097/00129492-198911000-00013
Hartrampf R, Battmer RD, Rost U, Strauss-Schier A, Lenarz T. Intraindividual comparison of extracochlear and intracochlear multichannel implants. The Annals of otology. rhinology & laryngology Supplement. 1995;166:280–2.
Simons JP, Whitaker ME, Hirsch BE. Cochlear implantation in a patient with bilateral temporal bone fractures. Otolaryngol Head Neck Surg [Internet]. 2005;132(5):809–11. Available from: http://dx.doi.org/10.1016/j.otohns.2004.06.711
Phelps PD, Proops DW. Imaging for cochlear implants. J Laryngol Otol [Internet]. 1999;113(24):21–3. Available from: http://dx.doi.org/10.1017/s0022215100146043
Woolford TJ, Roberts GR, Hartley C, Ramsden RT. Etiology of hearing loss and cochlear computed tomography: findings in preimplant assessment. The Annals of otology. rhinology & laryngology Supplement. 1995;166:201–6.
Palabiyik FB, Hacikurt K, Yazici Z. Facial nerve anomalies in paediatric cochlear implant candidates: radiological evaluation. J Laryngol Otol [Internet]. 2017;131(1):26–31. Available from: http://dx.doi.org/10.1017/s0022215116009555
Mylanus EAM, Rotteveel LJC, Leeuw RL. Congenital malformation of the inner ear and pediatric cochlear implantation. Otol Neurotol [Internet]. 2004;25(3):308–17. Available from: http://dx.doi.org/10.1097/00129492-200405000-00019
Eisenman DJ, Ashbaugh C, Zwolan TA, Arts HA, Telian SA. Implantation of the malformed cochlea. Otol Neurotol [Internet]. 2001;22(6):834–41. Available from: http://dx.doi.org/10.1097/00129492-200111000-00020
Mackeith S, Joy R, Robinson P, Hajioff D. Pre-operative imaging for cochlear implantation: magnetic resonance imaging, computed tomography, or both? Cochlear Implants Int [Internet]. 2012;13(3):133–6. Available from: http://dx.doi.org/10.1179/1754762811y.0000000002
Trimble K, Blaser S, James AL, Papsin BC. Computed tomography and/or magnetic resonance imaging before pediatric cochlear implantation? Developing an investigative strategy. Otol Neurotol [Internet]. 2007;28(3):317–24. Available from: http://dx.doi.org/10.1097/01.mao.0000253285.40995.91
Sennaroglu L, Saatci I, Aralasmak A, Gursel B, Turan E. Magnetic resonance imaging versus computed tomography in pre-operative evaluation of cochlear implant candidates with congenital hearing loss. J Laryngol Otol [Internet]. 2002;116(10):804–10. Available from: http://dx.doi.org/10.1258/00222150260293619
Komatsubara S, Haruta A, Nagano Y, Kodama T. Evaluation of cochlear nerve imaging in severe congenital sensorineural hearing loss. ORL J Otorhinolaryngol Relat Spec [Internet]. 2007;69(3):198–202. Available from: http://dx.doi.org/10.1159/000099231
Casselman JW, Offeciers FE, Govaerts PJ, Kuhweide R, Geldof H, Somers T, et al. Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology [Internet]. 1997;202(3):773–81. Available from: http://dx.doi.org/10.1148/radiology.202.3.9051033
Arriaga MA, Carrier D. MRI and clinical decisions in cochlear implantation. Am J Otol. 1996;17(4):547–53.
Savić L, Milosević D, Komazec Z. Dijagnostika ostećenja sluha kod dece ranim evociranim potencijalima mozdanog stabla na slusnu draz [Diagnosis of hearing disorders in children with early evoked auditory brainstem potentials. Medicinski pregled. 1999;52(3–5):146–50.
West N, Klokker M, Cayé-Thomasen P. Vestibular screening before cochlear implantation: Clinical implications and challenges in 409 cochlear implant recipients. Otol Neurotol [Internet]. 2021;42(2):e137–44. Available from: http://dx.doi.org/10.1097/mao.0000000000002898
Casale J, Kandle PF, Murray IV, Murr N. Physiology, cochlear function. StatPearls Publishing; 2023.
Hrncirik F, Roberts I, Sevgili I, Swords C, Bance M. Models of cochlea used in cochlear implant research: A review. Ann Biomed Eng [Internet]. 2023;51(7):1390–407. Available from: http://dx.doi.org/10.1007/s10439-023-03192-3
Alvarez F, Kipping D, Nogueira W. A computational model to simulate spectral modulation and speech perception experiments of cochlear implant users. Front Neuroinform [Internet]. 2023;17. Available from: http://dx.doi.org/10.3389/fninf.2023.934472
Kretzmer EA, Meltzer NE, Haenggeli C-A, Ryugo DK. An animal model for cochlear implants. Arch Otolaryngol Head Neck Surg [Internet]. 2004;130(5):499. Available from: http://dx.doi.org/10.1001/archotol.130.5.499
Claussen AD, Vielman Quevedo R, Mostaert B, Kirk JR, Dueck WF, Hansen MR. A mouse model of cochlear implantation with chronic electric stimulation. PLoS One [Internet]. 2019;14(4):e0215407. Available from: http://dx.doi.org/10.1371/journal.pone.0215407
Lei IM, Jiang C, Lei CL, de Rijk SR, Tam YC, Swords C, et al. 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nat Commun [Internet]. 2021;12(1). Available from: http://dx.doi.org/10.1038/s41467-021-26491-6
Hrncirik F, Roberts IV, Swords C, Christopher PJ, Chhabu A, Gee AH, et al. Impact of scala tympani geometry on insertion forces during implantation. Biosensors (Basel) [Internet]. 2022;12(11):999. Available from: http://dx.doi.org/10.3390/bios12110999
Kjer HM, Fagertun J, Wimmer W, Gerber N, Vera S, Barazzetti L, et al. Patient-specific estimation of detailed cochlear shape from clinical CT images. Int J Comput Assist Radiol Surg [Internet]. 2018;13(3):389–96. Available from: http://dx.doi.org/10.1007/s11548-017-1701-7
Nash R, Otero S, Lavy J. Use of MRI to determine cochlear duct length in patients undergoing cochlear implantation. Cochlear Implants Int [Internet]. 2019;20(2):57–61. Available from: http://dx.doi.org/10.1080/14670100.2018.1549186
Würfel W, Lanfermann H, Lenarz T, Majdani O. Cochlear length determination using Cone Beam Computed Tomography in a clinical setting. Hear Res [Internet]. 2014;316:65–72. Available from: http://dx.doi.org/10.1016/j.heares.2014.07.013
Swarup A, Karakkandy V, Chappity P, Naik S, Behera SK, Parida PK, et al. Comparing accuracy of cochlear measurements on magnetic resonance imaging and computed tomography: A step towards radiation-free cochlear implantation. J Otol [Internet]. 2023;18(4):208–13. Available from: http://dx.doi.org/10.1016/j.joto.2023.08.001
Srinivasan R, So CW, Amin N, Jaikaransingh D, D’Arco F, Nash R. A review of the safety of MRI in cochlear implant patients with retained magnets. Clin Radiol [Internet]. 2019;74(12):972.e9-972.e16. Available from: http://dx.doi.org/10.1016/j.crad.2019.06.011
- Abstract Viewed: 198 times
- PDF Downloaded: 117 times