Cytotoxicity Evaluation of Madrepora Coral on Peripheral Blood Mononuclear Cells
Regeneration, Reconstruction & Restoration (Triple R),
Vol. 5 (2020),
24 March 2020
,
Page e14
https://doi.org/10.22037/rrr.v5i.31185
Abstract
Introduction: The mineral skeleton of corals possesses physical and chemical properties that could resemble the matrix of human bone. It is crucial to evaluate the cytotoxicity of the coral before utilizing it in clinical settings. The present study aimed to assess the cytotoxicity of Madrepora coral on peripheral mononuclear blood (PBM) cells.
Materials and Methods: Different concentrations (50, 20, 10, 5, 2, 1 and 0.5 mg/ml) of coral powder were prepared. 96-well plate containing PBM cells, culture medium, and different concentrations of the coral powered was incubated in 37° C with 5% CO2 for 24, 48, 72 hours. The cell viability was evaluated using MTT assay.
Results: After 24 h, only 50 mg/ml dose of the coral significantly decreased the viability of PBM cells compared to the control group. After 48 h, 20 mg/ml and 50 mg/ml doses significantly decreased the viability of PBM cells (P < 0.05). After 72 h, the viability of PBM cells was significantly decreased with 10 mg/ml, 20 mg/ml, and 50 mg/ml doses (P < 0.05).
Conclusion: It can be concluded that the Madrepora coral has low toxicity for mononuclear peripheral blood cells in high doses, and it can be a candidate for implantation in human as a bone substitute.
- Bone defect
- Bone Substitutes
- Coral
- Cytotoxicity
- Dental implant
- Madrepora
- MTT
- Peripheral blood cells
How to Cite
References
Sambrook RJ, Judge RB, Abuzaar MA. Strategies for restoration of single implants and use of cross-pin retained restorations by Australian prosthodontists. Aust Dent J 2012;57:409-414.
Khojasteh A, Behnia H, Shayesteh YS, Morad G, Alikhasi M. Localized bone augmentation with cortical bone blocks tented over different particulate bone substitutes: a retrospective study. Int J Oral Maxillofac Implants 2012;27:1481-1493.
Kaing L, Grubor D, Chandu A. Assessment of bone grafts placed within an oral and maxillofacial training programme for implant rehabilitation. Aust Dent J 2011;56:406-411.
Sahrmann P, Attin T, Schmidlin PR. Regenerative treatment of peri-implantitis using bone substitutes and membrane: a systematic review. Clin Implant Dent Relat Res 2011;13:46-57.
Ghezzi C, Virzi M, Schupbach P, Broccaioli A, Simion M. Treatment of combined endodontic-periodontic lesions using guided tissue regeneration: clinical case and histology. Int J Periodontics Restorative Dent 2012;32:433-439.
Hammerle CH, Araujo MG, Simion M. Evidence-based knowledge on the biology and treatment of extraction sockets. Clin Oral Implants Res 2012;23 Suppl 5:80-82.
Nissan J, Gross O, Mardinger O, Ghelfan O, Sacco R, Chaushu G. Post-traumatic implant-supported restoration of the anterior maxillary teeth using cancellous bone block allografts. J Oral Maxillofac Surg 2011;69:e513-518.
Goh BT, Lee S, Tideman H, Stoelinga PJ. Mandibular reconstruction in adults: a review. Int J Oral Maxillofac Surg 2008;37:597-605.
Darby I, Chen S, De Poi R. Ridge preservation: what is it and when should it be considered. Aust Dent J 2008;53:11-21.
Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants 2009;24 Suppl:218-236.
Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants 2009;24 Suppl:237-259.
Retzepi M, Donos N. Guided Bone Regeneration: biological principle and therapeutic applications. Clin Oral Implants Res 2010;21:567-576.
Darby I. Periodontal materials. Aust Dent J 2011;56 Suppl 1:107-118.
Dung SZ, Tu YK. Effect of different alloplast materials on the stability of vertically augmented new tissue. Int J Oral Maxillofac Implants 2012;27:1375-1381.
Gholami GA, Najafi B, Mashhadiabbas F, Goetz W, Najafi S. Clinical, histologic and histomorphometric evaluation of socket preservation using a synthetic nanocrystalline hydroxyapatite in comparison with a bovine xenograft: a randomized clinical trial. Clin Oral Implants Res 2012;23:1198-1204.
Taheri M, Molla R, Radvar M, Sohrabi K, Najafi MH. An evaluation of bovine derived xenograft with and without a bioabsorbable collagen membrane in the treatment of mandibular Class II furcation defects. Aust Dent J 2009;54:220-227.
Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004;2:65-73.
Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med 2012;23:473-483.
Buser D, Hoffmann B, Bernard JP, Lussi A, Mettler D, Schenk RK. Evaluation of filling materials in membrane--protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 1998;9:137-150.
Moreira-Gonzalez A, Jackson IT, Miyawaki T, DiNick V, Yavuzer R. Augmentation of the craniomaxillofacial region using porous hydroxyapatite granules. Plast Reconstr Surg 2003;111:1808-1817.
Hobar PC, Pantaloni M, Byrd HS. Porous hydroxyapatite granules for alloplastic enhancement of the facial region. Clin Plast Surg 2000;27:557-569.
Li D, Liu J, Min Y. [Orbital rim reconstruction with coral porous hydroxyapatite]. Zhonghua Yan Ke Za Zhi 1996;32:179-181.
Sandor GK, Kainulainen VT, Queiroz JO, Carmichael RP, Oikarinen KS. Preservation of ridge dimensions following grafting with coral granules of 48 post-traumatic and post-extraction dento-alveolar defects. Dent Traumatol 2003;19:221-227.
Azimi H, Jalali Nadoushan MR, Tofighi H. The histological study of the efficacy of the madrepora particles on parietal bone healing of rabbit. Journal of Dental School Shahid Beheshti University of Medical Sciences 2007;24:485-491.
Osorio RM, Hefti A, Vertucci FJ, Shawley AL. Cytotoxicity of endodontic materials. J Endod 1998;24:91-96.
Alam N, Bae BH, Hong J, Lee CO, Im KS, Jung JH. Cytotoxic diacetylenes from the stony coral Montipora species. J Nat Prod 2001;64:1059-1063.
Ferrari A, Hannouche D, Oudina K, et al. In vivo tracking of bone marrow fibroblasts with fluorescent carbocyanine dye. J Biomed Mater Res 2001;56:361-367.
Shabana AHM, Ouhayoun JP, Boulekbache H, Sautier JM, Forest N. Ultrastructural study of the effects of coral skeleton on cultured human gingival fibroblasts in three-dimensional collagen lattices. J Mater Sci: Mater Med 1991;2:162-167.
Fricain JC, Bareille R, Rouais F, Basse-Cathalinat B, Dupuy B. "In vitro" dissolution of coral in peritoneal or fibroblast cell cultures. J Dent Res 1998;77:406-411.
Theiszova M, Jantova S, Dragunova J, Grznarova P, Palou M. Comparison the cytotoxicity of hydroxyapatite measured by direct cell counting and MTT test in murine fibroblast NIH-3T3 cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005;149:393-396.
Evans EJ. Toxicity of hydroxyapatite in vitro: the effect of particle size. Biomaterials 1991;12:574-576.
- Abstract Viewed: 151 times
- PDF Downloaded: 85 times